信息学奥赛一本通 1200:分解因数 | OpenJudge NOI 2.2 1751:分解因数

本文解析了OpenJudge上的两个题目,涉及递归和深搜技巧,详细介绍了如何通过递归方法计算整数分解为大于等于特定数的因数的方案数,以及使用深度优先搜索实现相同目标。展示了两种解法的代码实例,适合学习递归和搜索算法在分解因数问题中的应用。
摘要由CSDN通过智能技术生成

【题目链接】

ybt 1200:分解因数
OpenJudge NOI 2.2 1751:分解因数

【题目考点】

1. 递归
2. 深搜

【解题思路】

解法1:递归

由于要求得到的因数分解序列必须是升序的,那么每次分解出的因数必须大于等于上次分解出的因数。

  • 递归问题:对整数k进行因数分解,分解出的因数大于等于st的方案数
  • 递归关系:
    对k的每个大于st的因数i,将k分解为: k = i ∗ ( k / i ) k=i*(k/i) k=i(k/i)的形式,接下来求整数 k / i k/i k/i进行因数分解的方案数。将所有的方案数加和,即为整数k进行因数分解的方案数。
  • 递归出口:
    当k的值等于1时,无法再继续进行分解,分解结束,因数分解的方案数加1。
    该问题要解决的是:对整数n进行分解,分解出的因数大于等于2的方案数。
解法2:深搜

该解法与上一种解法没有本质区别,仅仅是思考角度不同。这里用深搜的思路来思考。
每次搜索找k的一个因数,该因数必须大于等于上次找到的因数st。
如果找到的因数等于k,那么搜索结束,得到一种分解方案。

【题解代码】

解法1:递归
#include <bits/stdc++.h>
using namespace std;
//返回数字k分解成由大于等于st的因数乘积的形式的分解方案数 
int solve(int k, int st)
{
    if(k == 1)//k为1表示分解结束,形成1种方案 
        return 1;
    int ct = 0;
    for(int i = st; i <= k; ++i)
    {
        if(k%i == 0)
            ct += solve(k/i, i);//分解方案增加:将k/i分解成因数最小为i的分解方案数。 
    }
    return ct; 
}
int main()
{
	int n, a;
	cin >> n;
	while(n--)
    {
        cin >> a;
        cout << solve(a, 2) << endl;//分解数字a,因数大于等于2 
    } 
	return 0;
}
解法2:深搜
#include <bits/stdc++.h>
using namespace std;
int ct; //计数 
void dfs(int k, int st)//搜索k的大于等于st的因数 
{
    for(int i = st; i <= k; ++i)
    {
        if(k%i == 0)
        {
            if(i == k)//找到解 
                ct++;//方案数加1 
            else
                dfs(k/i, i);
        }
    }
}
int main()
{
	int n, a;
	cin >> n;
	while(n--)
    {
        cin >> a;
        ct = 0;
        dfs(a, 2);//搜索a的大于等于2的因数 
        cout << ct << endl;
    } 
	return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值