【题目链接】
ybt 1287:最低通行费
OpenJudge NOI 2.6 7614:最低通行费
【题目考点】
1. 动态规划:坐标型动规
【解题思路】
解法1:坐标型动规
限定商人必须在2N-1个单位时间穿越出去,那么该人每次只能向右或向下走。
记a[i][j]
为(i,j)位置需要缴纳的费用。
1. 状态定义
集合:从左上角到右下角的路径
限制:路径终点位置(i,j)
属性:缴纳费用
条件:最少
统计量:缴纳费用
状态定义:dp[i][j]
:从左上角(1,1)到(i,j)位置的所有路径中,缴纳费用最少的路径的缴纳费用。
初始状态:dp[1][1]
:(1,1)到(1,1)需要缴纳的费用,为a[i][j]
。
2. 状态转移方程
集合:从左上角(1,1)到(i,j)位置的所有路径
分割集合:根据如何到达(i,j)位置来分割集合
- 如果
i
=
1
i=1
i=1,那么到达(i,j)的前一个位置只能是(i,j-1),到达(i,j)的费用为从(1,1)到(i,j-1)的费用加上(i,j)位置的费用,即
dp[i][j] = dp[i][j-1]+a[i][j]
- 如果
j
=
1
j=1
j=1,那么到达(i,j)的前一个位置只能是(i-1,j),到达(i,j)的费用为从(1,1)到(i-1,j)的费用加上(i,j)位置的费用,即
dp[i][j] = dp[i-1][j]+a[i][j]
- 如果
i
>
1
i>1
i>1且
j
>
1
j>1
j>1,那么到达(i,j)的前一个位置只能是(i-1,j)或(i, j-1)
- 如果前一个位置是(i-1,j),到达(i,j)的费用为
dp[i-1][j]+a[i][j]
- 如果前一个位置是(i,j-1),到达(i,j)的费用为
dp[i][j-1]+a[i][j]
- 以上两种情况取费用较小的情况,即
dp[i][j] = min(dp[i-1][j], dp[i][j-1])+a[i][j]
- 如果前一个位置是(i-1,j),到达(i,j)的费用为
【题解代码】
解法1:坐标型动规
#include <bits/stdc++.h>
using namespace std;
#define N 105
int main()
{
int n, dp[N][N], a[N][N];
cin >> n;
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= n; ++j)
cin >> a[i][j];
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= n; ++j)
{
if(i == 1 && j == 1)
dp[i][j] = a[i][j];
else if(i == 1)
dp[i][j] = dp[i][j-1] + a[i][j];
else if(j == 1)
dp[i][j] = dp[i-1][j] + a[i][j];
else
dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + a[i][j];
}
cout << dp[n][n];
return 0;
}