信息学奥赛一本通 1287:最低通行费 | OpenJudge NOI 2.6 7614:最低通行费

【题目链接】

ybt 1287:最低通行费
OpenJudge NOI 2.6 7614:最低通行费

【题目考点】

1. 动态规划:坐标型动规

【解题思路】

解法1:坐标型动规

限定商人必须在2N-1个单位时间穿越出去,那么该人每次只能向右或向下走。
a[i][j]为(i,j)位置需要缴纳的费用。

1. 状态定义

集合:从左上角到右下角的路径
限制:路径终点位置(i,j)
属性:缴纳费用
条件:最少
统计量:缴纳费用
状态定义dp[i][j]:从左上角(1,1)到(i,j)位置的所有路径中,缴纳费用最少的路径的缴纳费用。
初始状态dp[1][1]:(1,1)到(1,1)需要缴纳的费用,为a[i][j]

2. 状态转移方程

集合:从左上角(1,1)到(i,j)位置的所有路径
分割集合:根据如何到达(i,j)位置来分割集合

  • 如果 i = 1 i=1 i=1,那么到达(i,j)的前一个位置只能是(i,j-1),到达(i,j)的费用为从(1,1)到(i,j-1)的费用加上(i,j)位置的费用,即dp[i][j] = dp[i][j-1]+a[i][j]
  • 如果 j = 1 j=1 j=1,那么到达(i,j)的前一个位置只能是(i-1,j),到达(i,j)的费用为从(1,1)到(i-1,j)的费用加上(i,j)位置的费用,即dp[i][j] = dp[i-1][j]+a[i][j]
  • 如果 i > 1 i>1 i>1 j > 1 j>1 j>1,那么到达(i,j)的前一个位置只能是(i-1,j)或(i, j-1)
    • 如果前一个位置是(i-1,j),到达(i,j)的费用为dp[i-1][j]+a[i][j]
    • 如果前一个位置是(i,j-1),到达(i,j)的费用为dp[i][j-1]+a[i][j]
    • 以上两种情况取费用较小的情况,即dp[i][j] = min(dp[i-1][j], dp[i][j-1])+a[i][j]

【题解代码】

解法1:坐标型动规
#include <bits/stdc++.h>
using namespace std;
#define N 105
int main()
{
    int n, dp[N][N], a[N][N];
    cin >> n;
    for(int i = 1; i <= n; ++i)
        for(int j = 1; j <= n; ++j)
            cin >> a[i][j];
    for(int i = 1; i <= n; ++i)
        for(int j = 1; j <= n; ++j)
        {
            if(i == 1 && j == 1)
                dp[i][j] = a[i][j];
            else if(i == 1)
                dp[i][j] = dp[i][j-1] + a[i][j];
            else if(j == 1)
                dp[i][j] = dp[i-1][j] + a[i][j];
            else
                dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + a[i][j];
        }
    cout << dp[n][n];
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值