信息学奥赛一本通 1279:【例9.23】橱窗布置(flower) | 洛谷 P1854 花店橱窗布置

【题目链接】

ybt 1279:【例9.23】橱窗布置(flower)
洛谷 P1854 花店橱窗布置
吐槽:一本通中给的测试数据中,负号是全角负号!怪不得每次数据读不完程序就结束了。还是用洛谷的测试数据吧。

【题目考点】

1. 动态规划

【解题思路】

1. 状态定义

集合:摆花的方案
限制:选择前几束花,放在前几个瓶子中
属性:美学值
条件:最大
统计量:美学值
状态定义dp[i][j]:将前i束花放入前j个瓶子中,美学值最大的方案的美学值。
初始状态:前0束花放入j个花瓶中,美学值为0。所以dp[0][j] = 0

2. 状态转移方程

记将第i束花放入第j个瓶子得到的美学值为a[i][j]
集合:将前i束花放入前j个瓶子
本题分割集合的方法有两种,因此状态转移方程也有两种。

解法1:

分割集合:根据将第i束花放入第几个瓶子来分割集合

  • 如果把第i束花放入第j个瓶子,那么接下来需要把前i-1束花放入前j-1个瓶子中获得最大美学值。dp[i][j] = dp[i-1][j-1] + a[i][j]
  • 如果把第i束花放入第j-1个瓶子,那么接下来需要把前i-1束花放入前j-2个瓶子中获得最大美学值。dp[i][j] = dp[i-1][j-2] + a[i][j-1]
  • 如果把第i束花放入第i个瓶子,那么接下来需要把前i-1束花放入前i-1个瓶子中获得最大美学值。dp[i][j] = dp[i-1][i-1] + a[i][i]
  • 以上多种情况取最大值。
  • 综上,k从i循环到j,dp[i][j] = max(dp[i][j], dp[i-1][k-1] + a[i][k])
解法2:

分割集合:根据将第i束花是否放入第j瓶子来分割集合

  • 如果把第i束花放入第j个瓶子,那么接下来需要把前i-1束花放入前j-1个瓶子中获得最大美学值。dp[i][j] = dp[i-1][j-1] + a[i][j]
  • 如果不把第i束花放入第j瓶子,那么接下来需要把前i束花放入前j-1个瓶子中获得最大美学值。dp[i][j] = dp[i][j-1]
  • 以上两种情况取最大值

3. 具体做法:

1. 瓶子编号j的循环范围

由于每束花都要放在某个花瓶中,前i束花放入前j个瓶子中,瓶子数量必须大于等于花的数量,所以 j ≥ i j \ge i ji
一共有f束花v个瓶子,在前i束花放入前j个瓶子时,还剩下f-i束花,v-j个瓶子,剩下的瓶子的数量也一定要大于等于花的数量,因此 v − j ≥ f − i v-j \ge f-i vjfi,即 j ≤ v − f + i j \le v-f+i jvf+i
所以j从i循环到v-f+i。

2. 记录方案

设数组b,b[i][j]表示如果将前i束花放入前j个瓶子,第i束花所在的瓶子。
如果确定将花放入第k瓶子能获得最大美学值,可以更新dp[i][j],那么也同时更新b[i][j] = k
如果将前i束花放入前j个瓶子与放入前j-1个瓶子能获得的最大美学值一样,那么将前i束花放入前j个瓶子第i束花所在的瓶子,与将前i束花放入前j-1个瓶子第i束花所在的瓶子也是一样的,所以b[i][j] = b[i][j-1]
输出时通过递归的方法逆序输出,前i束花放入前j个瓶子,第i束花在b[i][j],那么先输出前i-1束花放在前b[i][j]-1个瓶子中的情况,再输出b[i][j]

3. 复杂度

方法2的时间复杂度稍优于方法1。由于f与v最多为 100 100 100 O ( n 2 ) O(n^2) O(n2) O ( n 3 ) O(n^3) O(n3)的复杂度都能过。
空间复杂度上,方法1可以做滚动数组优化,不过没有必要,输入数据和b数组都是 O ( n 2 ) O(n^2) O(n2)复杂度的,滚动数组优化后并不能减少整体的空间复杂度。

【题解代码】

解法1:三重循环
#include<bits/stdc++.h>
using namespace std;
#define N 105
int f, v, a[N][N], dp[N][N];//dp[i][j]:前i个束花放在前j个花瓶中能得到的最大美学度
int b[N][N];//b[i][j]:前i个花束放入前j个瓶子,第i束花在哪个瓶子 
void show(int i, int j)//输出前i个花束放入前j个瓶子各花束的位置 
{
	if(i == 0)
		return;
	show(i-1, b[i][j]-1);
	cout << b[i][j] << ' ';
}
int main()
{
    cin >> f >> v;
    for(int i = 1; i <= f; ++i)
        for(int j = 1; j <= v; ++j)
            cin >> a[i][j];
	memset(dp, 0xc0, sizeof(dp));//初始化为负无穷
    for(int j = 0; j <= v; ++j)
    	dp[0][j] = 0;
	for(int i = 1; i <= f; ++i)
        for(int j = i; j <= v-f+i; ++j)
            for(int k = i; k <= j; ++k)
            {
        	    if(dp[i][j] < dp[i-1][k-1] + a[i][k])
        	    {
        	       	dp[i][j] = dp[i-1][k-1] + a[i][k];
        		    b[i][j] = k; 
        	    }
        	}
    cout << dp[f][v] << endl;
    show(f, v);
    return 0;
}
解法2:二重循环
#include<bits/stdc++.h>
using namespace std;
#define N 105
int f, v, a[N][N], dp[N][N];//dp[i][j]:前i个束花放在前j个花瓶中能得到的最大美学度
int b[N][N];//b[i][j]:前i个花束放入前j个瓶子,第i束花在哪个瓶子 
void show(int i, int j)//输出前i个花束放入前j个瓶子各花束的位置 
{
	if(i == 0)
		return;
	show(i-1, b[i][j]-1);
	cout << b[i][j] << ' ';
}
int main()
{
    cin >> f >> v;
    for(int i = 1; i <= f; ++i)
        for(int j = 1; j <= v; ++j)
            cin >> a[i][j];
	memset(dp, 0xc0, sizeof(dp));//初始化为负无穷
    for(int j = 0; j <= v; ++j)
    	dp[0][j] = 0;
	for(int i = 1; i <= f; ++i)
        for(int j = i; j <= v-f+i; ++j)
        {
        	if(dp[i][j-1] < dp[i-1][j-1]+a[i][j])
        	{
        		dp[i][j] = dp[i-1][j-1]+a[i][j];
        		b[i][j] = j; 
        	}
			else
			{
        		dp[i][j] = dp[i][j-1];
        		b[i][j] = b[i][j-1];
        	}
        }
    cout << dp[f][v] << endl;
    show(f, v);
    return 0;
}
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值