【题目链接】
ybt 1279:【例9.23】橱窗布置(flower)
洛谷 P1854 花店橱窗布置
吐槽:一本通中给的测试数据中,负号是全角负号!怪不得每次数据读不完程序就结束了。还是用洛谷的测试数据吧。
【题目考点】
1. 动态规划
【解题思路】
1. 状态定义
集合:摆花的方案
限制:选择前几束花,放在前几个瓶子中
属性:美学值
条件:最大
统计量:美学值
状态定义:dp[i][j]
:将前i束花放入前j个瓶子中,美学值最大的方案的美学值。
初始状态:前0束花放入j个花瓶中,美学值为0。所以dp[0][j] = 0
。
2. 状态转移方程
记将第i束花放入第j个瓶子得到的美学值为a[i][j]
。
集合:将前i束花放入前j个瓶子
本题分割集合的方法有两种,因此状态转移方程也有两种。
解法1:
分割集合:根据将第i束花放入第几个瓶子来分割集合
- 如果把第i束花放入第j个瓶子,那么接下来需要把前i-1束花放入前j-1个瓶子中获得最大美学值。
dp[i][j] = dp[i-1][j-1] + a[i][j]
- 如果把第i束花放入第j-1个瓶子,那么接下来需要把前i-1束花放入前j-2个瓶子中获得最大美学值。
dp[i][j] = dp[i-1][j-2] + a[i][j-1]
… - 如果把第i束花放入第i个瓶子,那么接下来需要把前i-1束花放入前i-1个瓶子中获得最大美学值。
dp[i][j] = dp[i-1][i-1] + a[i][i]
- 以上多种情况取最大值。
- 综上,k从i循环到j,
dp[i][j] = max(dp[i][j], dp[i-1][k-1] + a[i][k])
解法2:
分割集合:根据将第i束花是否放入第j瓶子来分割集合
- 如果把第i束花放入第j个瓶子,那么接下来需要把前i-1束花放入前j-1个瓶子中获得最大美学值。
dp[i][j] = dp[i-1][j-1] + a[i][j]
- 如果不把第i束花放入第j瓶子,那么接下来需要把前i束花放入前j-1个瓶子中获得最大美学值。
dp[i][j] = dp[i][j-1]
- 以上两种情况取最大值
3. 具体做法:
1. 瓶子编号j的循环范围
由于每束花都要放在某个花瓶中,前i束花放入前j个瓶子中,瓶子数量必须大于等于花的数量,所以
j
≥
i
j \ge i
j≥i。
一共有f束花v个瓶子,在前i束花放入前j个瓶子时,还剩下f-i束花,v-j个瓶子,剩下的瓶子的数量也一定要大于等于花的数量,因此
v
−
j
≥
f
−
i
v-j \ge f-i
v−j≥f−i,即
j
≤
v
−
f
+
i
j \le v-f+i
j≤v−f+i
所以j从i循环到v-f+i。
2. 记录方案
设数组b,b[i][j]
表示如果将前i束花放入前j个瓶子,第i束花所在的瓶子。
如果确定将花放入第k瓶子能获得最大美学值,可以更新dp[i][j]
,那么也同时更新b[i][j] = k
。
如果将前i束花放入前j个瓶子与放入前j-1个瓶子能获得的最大美学值一样,那么将前i束花放入前j个瓶子第i束花所在的瓶子,与将前i束花放入前j-1个瓶子第i束花所在的瓶子也是一样的,所以b[i][j] = b[i][j-1]
。
输出时通过递归的方法逆序输出,前i束花放入前j个瓶子,第i束花在b[i][j]
,那么先输出前i-1束花放在前b[i][j]-1
个瓶子中的情况,再输出b[i][j]
。
3. 复杂度
方法2的时间复杂度稍优于方法1。由于f与v最多为
100
100
100,
O
(
n
2
)
O(n^2)
O(n2)或
O
(
n
3
)
O(n^3)
O(n3)的复杂度都能过。
空间复杂度上,方法1可以做滚动数组优化,不过没有必要,输入数据和b数组都是
O
(
n
2
)
O(n^2)
O(n2)复杂度的,滚动数组优化后并不能减少整体的空间复杂度。
【题解代码】
解法1:三重循环
#include<bits/stdc++.h>
using namespace std;
#define N 105
int f, v, a[N][N], dp[N][N];//dp[i][j]:前i个束花放在前j个花瓶中能得到的最大美学度
int b[N][N];//b[i][j]:前i个花束放入前j个瓶子,第i束花在哪个瓶子
void show(int i, int j)//输出前i个花束放入前j个瓶子各花束的位置
{
if(i == 0)
return;
show(i-1, b[i][j]-1);
cout << b[i][j] << ' ';
}
int main()
{
cin >> f >> v;
for(int i = 1; i <= f; ++i)
for(int j = 1; j <= v; ++j)
cin >> a[i][j];
memset(dp, 0xc0, sizeof(dp));//初始化为负无穷
for(int j = 0; j <= v; ++j)
dp[0][j] = 0;
for(int i = 1; i <= f; ++i)
for(int j = i; j <= v-f+i; ++j)
for(int k = i; k <= j; ++k)
{
if(dp[i][j] < dp[i-1][k-1] + a[i][k])
{
dp[i][j] = dp[i-1][k-1] + a[i][k];
b[i][j] = k;
}
}
cout << dp[f][v] << endl;
show(f, v);
return 0;
}
解法2:二重循环
#include<bits/stdc++.h>
using namespace std;
#define N 105
int f, v, a[N][N], dp[N][N];//dp[i][j]:前i个束花放在前j个花瓶中能得到的最大美学度
int b[N][N];//b[i][j]:前i个花束放入前j个瓶子,第i束花在哪个瓶子
void show(int i, int j)//输出前i个花束放入前j个瓶子各花束的位置
{
if(i == 0)
return;
show(i-1, b[i][j]-1);
cout << b[i][j] << ' ';
}
int main()
{
cin >> f >> v;
for(int i = 1; i <= f; ++i)
for(int j = 1; j <= v; ++j)
cin >> a[i][j];
memset(dp, 0xc0, sizeof(dp));//初始化为负无穷
for(int j = 0; j <= v; ++j)
dp[0][j] = 0;
for(int i = 1; i <= f; ++i)
for(int j = i; j <= v-f+i; ++j)
{
if(dp[i][j-1] < dp[i-1][j-1]+a[i][j])
{
dp[i][j] = dp[i-1][j-1]+a[i][j];
b[i][j] = j;
}
else
{
dp[i][j] = dp[i][j-1];
b[i][j] = b[i][j-1];
}
}
cout << dp[f][v] << endl;
show(f, v);
return 0;
}