信息学奥赛一本通 1366:二叉树输出(btout)

【题目链接】

ybt 1366:二叉树输出(btout)

【题目考点】

1. 二叉树

【解题思路】

该题意为:为每个结点都设一个长度:叶结点的长度为1,一个非叶结点的长度等于它的左右子树的长度之和。
接着按照先序遍历的顺序,每行输出一个结点的值,这个结点的长度是几,这一行就输出几个字符。
先已知先序遍历序列和中序遍历序列生成整棵树,具体做法见:ybt 1339:【例3-4】求后序遍历
在结点中设成员变量length,表示这个结点的长度。
用calcLen函数递归求出每个结点的长度

  • 递归出口:如果该结点是叶子结点,那么长度为1。
  • 递归关系:如果该结点不是叶子结点,那么长度为左孩子的长度和右孩子长度的加和。

用preOrder函数递归输出每个结点,每个结点输出的次数是其长度。

【题解代码】

解法1:使用字符数组
#include<bits/stdc++.h>
using namespace std;
#define N 105
struct Node
{
	char val;
	int left, right;
	int length;//表示该结点的长度,应该输出几个字符 
};
Node node[N];
int p;
char pre_s[N], mid_s[N];//先序,中序遍历字符串 
//由先序遍历序列pre_s[pl]~pre_s[pr]与中序遍历序列mid_s[ml]~mid_s[mr]构建二叉树,返回根结点地址 
int createTree(int pl, int pr, int ml, int mr)
{
    if(pl > pr || ml > mr)
        return 0;
    int np = ++p, i;
    node[np].val = pre_s[pl];//pre_s[pl]一定是根结点的值 
    for(i = ml; i <= mr; ++i)
        if(mid_s[i] == pre_s[pl])//找到根结点在中序序列中的下标为i 
            break;
    node[np].left = createTree(pl + 1, pl + i - ml, ml, i - 1);
    node[np].right = createTree(pl + i - ml + 1, pr, i + 1, mr);
    return np;
}
int calcLen(int r)
{
	if(r == 0)
		return 0;
	else if(node[r].left == 0 && node[r].right == 0)//如果地址为r的结点是叶子结点 
		return node[r].length = 1;//把以r为地址的结点的长度设为1,返回1 
	else
		return node[r].length = calcLen(node[r].left) + calcLen(node[r].right);//把以r为地址的结点的长度为左右孩子结点的长度加和  
}
void preOrder(int r)//先序遍历输出整个树的各个结点,每个结点输出次数等于其长度 
{
	if(r == 0)
		return;
	for(int i = 0; i < node[r].length; ++i)
		cout << node[r].val;
	cout << endl;
	preOrder(node[r].left);
	preOrder(node[r].right);
}
int main()
{
	cin >> pre_s >> mid_s;	
	int len = strlen(pre_s);
	int root = createTree(0, len - 1, 0, len - 1);
	calcLen(root);
	preOrder(root);
    return 0;
}
解法2:使用string类
#include<bits/stdc++.h>
using namespace std;
#define N 105
struct Node
{
	char val;
	int left, right;
	int length;//表示该结点的长度,应该输出几个字符 
};
Node node[N];
int p;
string s_pre, s_in;
int createTree(string sp, string si)//用先序遍历序列sp与中序遍历序列si构建二叉树,返回树根 
{
	int np = ++p, i;
    node[np].val = sp[0];
	for(i = 0; i < si.length(); ++i)
        if(sp[0] == si[i])
            break;
    int len_l = i, len_r = si.length() - 1 - i;//左右子树序列长度 
    if(len_l > 0)//序列长度大于0,才可以建立一棵树 
    	node[np].left = createTree(sp.substr(1, len_l), si.substr(0, len_l));
    if(len_r > 0)
		node[np].right = createTree(sp.substr(i+1, len_r), si.substr(i+1, len_r));
	return np;
}
int calcLen(int r)
{
	if(r == 0)
		return 0;
	else if(node[r].left == 0 && node[r].right == 0)//如果地址为r的结点是叶子结点 
		return node[r].length = 1;//把以r为地址的结点的长度设为1,返回1 
	else
		return node[r].length = calcLen(node[r].left) + calcLen(node[r].right);//把以r为地址的结点的长度为左右孩子结点的长度加和  
}
void preOrder(int r)//先序遍历输出整个树的各个结点,每个结点输出次数等于其长度 
{
	if(r == 0)
		return;
	for(int i = 0; i < node[r].length; ++i)
		cout << node[r].val;
	cout << endl;
	preOrder(node[r].left);
	preOrder(node[r].right);
}
int main()
{
	cin >> s_pre >> s_in;	
	int root = createTree(s_pre, s_in);
	calcLen(root);
	preOrder(root);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值