信息学奥赛一本通 1347:【例4-8】格子游戏

文章介绍了如何使用并查集解决判断无向图是否存在环的问题,提供了两种解题方法:一是将二维坐标转换为一维整数,二是直接用坐标作为并查集元素。在每种方法中,详细阐述了如何进行坐标转换、初始化、查找和合并操作,并给出了相应的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【题目链接】

ybt 1347:【例4-8】格子游戏

【题目考点】

1. 并查集:判断无向图是否有环

【解题思路】

该题为判断无向图是否有环。可以使用并查集来完成。

学习并查集时,每个元素都由一个整数来表示。而该问题中每个元素是一个坐标点,由(x, y)两个整数构成。
因而有两种方法解决该问题

解法1:将二维坐标变为一个整数

通过一个公式将二维坐标换算为一个整数,用这个整数代表该二维坐标。

例:假设坐标点是2行3列的,每个位置的坐标为x, y,转变后的数字为d,记为(x, y):d

第1列第2列第3列
第1行(1,1):1(1,2):2(1,3):3
第2行(2,1):4(2,2):5(2,3):6

可以推出n行n列的坐标系中,坐标(x,y)转为数字d,公式为: d = ( x − 1 ) ⋅ n + y d=(x-1)\cdot n+y d=(x1)n+y
把每个坐标都用一个数字表示。
每输入一个坐标(x,y),求出其对应的数字f。

  • 如果接下来输入字母D,即向下画,那么与(x,y)连接的点是(x+1, y),求出其对应的数字t。
  • 如果接下来输入字母R,即向右画,那么与(x,y)连接的点是(x, y+1),求出其对应的数字t。

判断f和t是否在一个集合(连通子图)中

  • 如果是,那么f与t连边会形成环,游戏结束。输出游戏结束时的步数。
  • 否则把f和t所在的集合合并。
解法2:直接使用坐标作为并查集中的元素

如果并查集中的元素不为整数,可以将fa数组改为映射(map类型),同时find、merge都发生改变。
解题思路与解法1类似。
在输入时,使用find直接判断两个数对元素是否在一个集合中

  • 如果已在一个集合中,说明两点间有路径连通,再加一条边就会形成环。
  • 否则,使用merge把两个数对元素所在的集合进行合并。

【题解代码】

解法1:将二维坐标变为一个整数
#include<bits/stdc++.h>
using namespace std;
#define N 40005
int fa[N], n, m;
int getNum(int x, int y)//用1个数字代表二维的坐标点 
{
    return (x-1)*n + y;
}
void init(int n)
{
    for(int i = 1; i <= n; ++i)
        fa[i] = i;
}
int find(int x)
{
    if(x == fa[x])
        return x;
    else
        return fa[x] = find(fa[x]);
}
void merge(int x, int y)
{ 
    fa[find(x)] = find(y);
}
int main()
{
    int x, y, i, f, t;
    char c;
    cin >> n >> m;
    init(n*n);
    for(i = 1; i <= m; ++i)//i:第几步 
    {
        cin >> x >> y >> c;
        f = getNum(x, y);
        if(c == 'D')
            t = getNum(x+1, y);
        else//c == 'R'
            t = getNum(x, y+1);
        if(find(f) == find(t))
            break;
        else
            merge(f, t);
    }
    if(i <= m)
        cout << i;
    else
        cout << "draw";
    return 0;
}
解法2:直接使用坐标作为并查集中的元素
#include<bits/stdc++.h>
using namespace std;
typedef pair<int, int> Pair;
map<Pair, Pair> fa;
Pair find(Pair x)
{
	if(x == fa[x])
		return x;
	else
		return fa[x] = find(fa[x]);
}
void merge(Pair x, Pair y)
{
	fa[find(x)] = find(y);
}
int main()
{
	Pair p, q;
	int n, m, x, y;
	char c;
	cin >> n >> m;
	for(int i = 1; i <= m; ++i)
	{
		cin >> x >> y >> c;
		p = Pair(x, y);
		if(c == 'D')
			q = Pair(x+1, y);
		else//c == 'R'
			q = Pair(x, y+1);
		if(fa.count(p) == 0)//如果不存在该点,则初始化 
			fa[p] = p;
		if(fa.count(q) == 0)
			fa[q] = q;
		if(find(p) == find(q))//p, q已连通,p,q再连边,则存在环 
		{
			cout << i;//输出步数 
			return 0;
		}
		merge(p, q);//合并两点 
	}
	cout << "draw";
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值