【题目链接】
【题目考点】
1. 并查集:判断无向图是否有环
【解题思路】
该题为判断无向图是否有环。可以使用并查集来完成。
学习并查集时,每个元素都由一个整数来表示。而该问题中每个元素是一个坐标点,由(x, y)两个整数构成。
因而有两种方法解决该问题
解法1:将二维坐标变为一个整数
通过一个公式将二维坐标换算为一个整数,用这个整数代表该二维坐标。
例:假设坐标点是2行3列的,每个位置的坐标为x, y,转变后的数字为d,记为(x, y):d
第1列 第2列 第3列 第1行 (1,1):1 (1,2):2 (1,3):3 第2行 (2,1):4 (2,2):5 (2,3):6
可以推出n行n列的坐标系中,坐标(x,y)转为数字d,公式为:
d
=
(
x
−
1
)
⋅
n
+
y
d=(x-1)\cdot n+y
d=(x−1)⋅n+y
把每个坐标都用一个数字表示。
每输入一个坐标(x,y),求出其对应的数字f。
- 如果接下来输入字母D,即向下画,那么与(x,y)连接的点是(x+1, y),求出其对应的数字t。
- 如果接下来输入字母R,即向右画,那么与(x,y)连接的点是(x, y+1),求出其对应的数字t。
判断f和t是否在一个集合(连通子图)中
- 如果是,那么f与t连边会形成环,游戏结束。输出游戏结束时的步数。
- 否则把f和t所在的集合合并。
解法2:直接使用坐标作为并查集中的元素
如果并查集中的元素不为整数,可以将fa数组改为映射(map类型),同时find、merge都发生改变。
解题思路与解法1类似。
在输入时,使用find直接判断两个数对元素是否在一个集合中
- 如果已在一个集合中,说明两点间有路径连通,再加一条边就会形成环。
- 否则,使用merge把两个数对元素所在的集合进行合并。
【题解代码】
解法1:将二维坐标变为一个整数
#include<bits/stdc++.h>
using namespace std;
#define N 40005
int fa[N], n, m;
int getNum(int x, int y)//用1个数字代表二维的坐标点
{
return (x-1)*n + y;
}
void init(int n)
{
for(int i = 1; i <= n; ++i)
fa[i] = i;
}
int find(int x)
{
if(x == fa[x])
return x;
else
return fa[x] = find(fa[x]);
}
void merge(int x, int y)
{
fa[find(x)] = find(y);
}
int main()
{
int x, y, i, f, t;
char c;
cin >> n >> m;
init(n*n);
for(i = 1; i <= m; ++i)//i:第几步
{
cin >> x >> y >> c;
f = getNum(x, y);
if(c == 'D')
t = getNum(x+1, y);
else//c == 'R'
t = getNum(x, y+1);
if(find(f) == find(t))
break;
else
merge(f, t);
}
if(i <= m)
cout << i;
else
cout << "draw";
return 0;
}
解法2:直接使用坐标作为并查集中的元素
#include<bits/stdc++.h>
using namespace std;
typedef pair<int, int> Pair;
map<Pair, Pair> fa;
Pair find(Pair x)
{
if(x == fa[x])
return x;
else
return fa[x] = find(fa[x]);
}
void merge(Pair x, Pair y)
{
fa[find(x)] = find(y);
}
int main()
{
Pair p, q;
int n, m, x, y;
char c;
cin >> n >> m;
for(int i = 1; i <= m; ++i)
{
cin >> x >> y >> c;
p = Pair(x, y);
if(c == 'D')
q = Pair(x+1, y);
else//c == 'R'
q = Pair(x, y+1);
if(fa.count(p) == 0)//如果不存在该点,则初始化
fa[p] = p;
if(fa.count(q) == 0)
fa[q] = q;
if(find(p) == find(q))//p, q已连通,p,q再连边,则存在环
{
cout << i;//输出步数
return 0;
}
merge(p, q);//合并两点
}
cout << "draw";
return 0;
}