实现求正整数a和正整数b的商向上取整

问题:输入正整数a、b,求⌈ab⌉\lceil \frac{a}{b} \rceilba
借助<cmath>中的ceil函数可以完成。

ceil((double)a/b);	

但是该写法中a/b进行了实数除法计算,结果有可能不够精确。
如果只进行整数运算:

  • 如果b可以整除a,则结果为ab\frac{a}{b}ba
  • 如果b不能整除a,那么结果为⌊ab⌋+1\lfloor \frac{a}{b} \rfloor+1ba+1
int divCeil(int a, int b)//求a/b向上取整
{
    return a%b == 0 ? a/b : a/b+1;
} 

另一种做法
如果b=1b = 1b=1,那么b可以整除a,⌈ab⌉=a=⌊a−1b⌋+1\lceil \frac{a}{b} \rceil=a= \lfloor \frac{a-1}{b} \rfloor+1ba=a=ba1+1
如果b>1b > 1b>1

  • 如果b可以整除a,即amod  b=0a\mod b =0amodb=0,则(a−1)mod  b=b−1(a-1)\mod b = b-1(a1)modb=b1,即b不会整除a-1。
    已知b>1b>1b>1,那么1b<1\frac{1}{ b}<1b1<1
    因此有ab−1<ab−1b<ab\frac{a}{b}-1<\frac{a}{b}-\frac{1}{b} <\frac{a}{b}ba1<bab1<ba,即ab=⌈a−1b⌉\frac{a}{b}=\lceil \frac{a-1}{b} \rceilba=ba1
    根据:如果y不能整除x,那么⌈xy⌉=⌊xy⌋+1\lceil \frac{x}{y} \rceil = \lfloor \frac{x}{y} \rfloor+1yx=yx+1
    ⌈ab⌉=ab=⌈a−1b⌉=⌊a−1b⌋+1\lceil \frac{a}{b} \rceil =\frac{a}{b} =\lceil \frac{a-1}{b} \rceil=\lfloor \frac{a-1}{b} \rfloor+1ba=ba=ba1=ba1+1

  • 如果b不能整除a,但b可以整除a-1
    ⌈ab⌉=⌈a−1b+1b⌉=a−1b+⌈1b⌉=⌊a−1b⌋+1\lceil \frac{a}{b} \rceil=\lceil \frac{a-1}{b}+\frac{1}{b} \rceil=\frac{a-1}{b}+\lceil \frac{1}{b} \rceil = \lfloor \frac{a-1}{b} \rfloor+1ba=ba1+b1=ba1+b1=ba1+1

  • 如果b不能整除a,也不能整除a-1
    ⌈ab⌉=⌈a−1b⌉=⌊a−1b⌋+1\lceil \frac{a}{b} \rceil=\lceil \frac{a-1}{b} \rceil=\lfloor \frac{a-1}{b} \rfloor+1ba=ba1=ba1+1
    综上,有⌈ab⌉=⌊a−1b⌋+1=⌊a+b−1b⌋\lceil \frac{a}{b} \rceil=\lfloor \frac{a-1}{b} \rfloor+1=\lfloor \frac{a+b-1}{b} \rfloorba=ba1+1=ba+b1

代码实现:

int divCeil(int a, int b)//求正整数a、b,a/b的商向上取整
{
	return (a-1)/b+1;//或(a+b-1)/b
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值