问题:输入正整数a、b,求
⌈
a
b
⌉
\lceil \frac{a}{b} \rceil
⌈ba⌉
借助<cmath>
中的ceil函数可以完成。
ceil((double)a/b);
但是该写法中a/b进行了实数除法计算,结果有可能不够精确。
如果只进行整数运算:
- 如果b可以整除a,则结果为 a b \frac{a}{b} ba
- 如果b不能整除a,那么结果为 ⌊ a b ⌋ + 1 \lfloor \frac{a}{b} \rfloor+1 ⌊ba⌋+1
int divCeil(int a, int b)//求a/b向上取整
{
return a%b == 0 ? a/b : a/b+1;
}
另一种做法
如果
b
=
1
b = 1
b=1,那么b可以整除a,
⌈
a
b
⌉
=
a
=
⌊
a
−
1
b
⌋
+
1
\lceil \frac{a}{b} \rceil=a= \lfloor \frac{a-1}{b} \rfloor+1
⌈ba⌉=a=⌊ba−1⌋+1
如果
b
>
1
b > 1
b>1
-
如果b可以整除a,即 a m o d b = 0 a\mod b =0 amodb=0,则 ( a − 1 ) m o d b = b − 1 (a-1)\mod b = b-1 (a−1)modb=b−1,即b不会整除a-1。
已知 b > 1 b>1 b>1,那么 1 b < 1 \frac{1}{ b}<1 b1<1,
因此有 a b − 1 < a b − 1 b < a b \frac{a}{b}-1<\frac{a}{b}-\frac{1}{b} <\frac{a}{b} ba−1<ba−b1<ba,即 a b = ⌈ a − 1 b ⌉ \frac{a}{b}=\lceil \frac{a-1}{b} \rceil ba=⌈ba−1⌉
根据:如果y不能整除x,那么 ⌈ x y ⌉ = ⌊ x y ⌋ + 1 \lceil \frac{x}{y} \rceil = \lfloor \frac{x}{y} \rfloor+1 ⌈yx⌉=⌊yx⌋+1
⌈ a b ⌉ = a b = ⌈ a − 1 b ⌉ = ⌊ a − 1 b ⌋ + 1 \lceil \frac{a}{b} \rceil =\frac{a}{b} =\lceil \frac{a-1}{b} \rceil=\lfloor \frac{a-1}{b} \rfloor+1 ⌈ba⌉=ba=⌈ba−1⌉=⌊ba−1⌋+1 -
如果b不能整除a,但b可以整除a-1
⌈ a b ⌉ = ⌈ a − 1 b + 1 b ⌉ = a − 1 b + ⌈ 1 b ⌉ = ⌊ a − 1 b ⌋ + 1 \lceil \frac{a}{b} \rceil=\lceil \frac{a-1}{b}+\frac{1}{b} \rceil=\frac{a-1}{b}+\lceil \frac{1}{b} \rceil = \lfloor \frac{a-1}{b} \rfloor+1 ⌈ba⌉=⌈ba−1+b1⌉=ba−1+⌈b1⌉=⌊ba−1⌋+1 -
如果b不能整除a,也不能整除a-1
⌈ a b ⌉ = ⌈ a − 1 b ⌉ = ⌊ a − 1 b ⌋ + 1 \lceil \frac{a}{b} \rceil=\lceil \frac{a-1}{b} \rceil=\lfloor \frac{a-1}{b} \rfloor+1 ⌈ba⌉=⌈ba−1⌉=⌊ba−1⌋+1
综上,有 ⌈ a b ⌉ = ⌊ a − 1 b ⌋ + 1 \lceil \frac{a}{b} \rceil=\lfloor \frac{a-1}{b} \rfloor+1 ⌈ba⌉=⌊ba−1⌋+1
代码实现:
int divCeil(int a, int b)//求正整数a、b,a/b的商向上取整
{
return (a-1)/b+1;
}