问题:输入正整数a、b,求⌈ab⌉\lceil \frac{a}{b} \rceil⌈ba⌉
借助<cmath>
中的ceil函数可以完成。
ceil((double)a/b);
但是该写法中a/b进行了实数除法计算,结果有可能不够精确。
如果只进行整数运算:
- 如果b可以整除a,则结果为ab\frac{a}{b}ba
- 如果b不能整除a,那么结果为⌊ab⌋+1\lfloor \frac{a}{b} \rfloor+1⌊ba⌋+1
int divCeil(int a, int b)//求a/b向上取整
{
return a%b == 0 ? a/b : a/b+1;
}
另一种做法
如果b=1b = 1b=1,那么b可以整除a,⌈ab⌉=a=⌊a−1b⌋+1\lceil \frac{a}{b} \rceil=a= \lfloor \frac{a-1}{b} \rfloor+1⌈ba⌉=a=⌊ba−1⌋+1
如果b>1b > 1b>1
-
如果b可以整除a,即amod b=0a\mod b =0amodb=0,则(a−1)mod b=b−1(a-1)\mod b = b-1(a−1)modb=b−1,即b不会整除a-1。
已知b>1b>1b>1,那么1b<1\frac{1}{ b}<1b1<1,
因此有ab−1<ab−1b<ab\frac{a}{b}-1<\frac{a}{b}-\frac{1}{b} <\frac{a}{b}ba−1<ba−b1<ba,即ab=⌈a−1b⌉\frac{a}{b}=\lceil \frac{a-1}{b} \rceilba=⌈ba−1⌉
根据:如果y不能整除x,那么⌈xy⌉=⌊xy⌋+1\lceil \frac{x}{y} \rceil = \lfloor \frac{x}{y} \rfloor+1⌈yx⌉=⌊yx⌋+1
⌈ab⌉=ab=⌈a−1b⌉=⌊a−1b⌋+1\lceil \frac{a}{b} \rceil =\frac{a}{b} =\lceil \frac{a-1}{b} \rceil=\lfloor \frac{a-1}{b} \rfloor+1⌈ba⌉=ba=⌈ba−1⌉=⌊ba−1⌋+1 -
如果b不能整除a,但b可以整除a-1
⌈ab⌉=⌈a−1b+1b⌉=a−1b+⌈1b⌉=⌊a−1b⌋+1\lceil \frac{a}{b} \rceil=\lceil \frac{a-1}{b}+\frac{1}{b} \rceil=\frac{a-1}{b}+\lceil \frac{1}{b} \rceil = \lfloor \frac{a-1}{b} \rfloor+1⌈ba⌉=⌈ba−1+b1⌉=ba−1+⌈b1⌉=⌊ba−1⌋+1 -
如果b不能整除a,也不能整除a-1
⌈ab⌉=⌈a−1b⌉=⌊a−1b⌋+1\lceil \frac{a}{b} \rceil=\lceil \frac{a-1}{b} \rceil=\lfloor \frac{a-1}{b} \rfloor+1⌈ba⌉=⌈ba−1⌉=⌊ba−1⌋+1
综上,有⌈ab⌉=⌊a−1b⌋+1=⌊a+b−1b⌋\lceil \frac{a}{b} \rceil=\lfloor \frac{a-1}{b} \rfloor+1=\lfloor \frac{a+b-1}{b} \rfloor⌈ba⌉=⌊ba−1⌋+1=⌊ba+b−1⌋
代码实现:
int divCeil(int a, int b)//求正整数a、b,a/b的商向上取整
{
return (a-1)/b+1;//或(a+b-1)/b
}