自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 资源 (14)
  • 收藏
  • 关注

转载 Immutable data and react

https://www.youtube.com/watch?v=I7IdS-PbEgIImmutable 详解及 React 中实践https://github.com/camsong/blog/issues/3

2017-01-13 00:46:57 365

原创 first head html css 读书笔记

first head html css 读书笔记

2017-01-13 00:23:51 593

原创 概率数理统计--2.2 多维随机变量

2.2.1 离散型随机向量的分布设X=(X1, X2,,,,,Xn)为一n维向量,其每个分量,即X1,...... ,Xn,都是一维随机变量,则称X是一个n维随机向量或n维随机变量。多项分布设 A1,A2,...,An 是某一试验之下的完备事件群,即事件A1,...,An两两互斥,其和为必然事件,它们发生的概率分别为p1,...,pn, 且pi>=0 ,p1+...+pn =

2013-03-07 11:27:02 937

原创 概率数理统计--2.1 一维随机变量

2.1.1 随机变量的概念随机变量就是“其值随机会而定”的变量。ex:       掷骰子, 掷出的点数X是一个随机变量,它可以取1,......,6等6个值。 到底是哪一个,要等掷了骰子以后才知道。随机变量区分两大类:1. 离散型随机变量;2. 连续型随机变量;2.1.2 离散型随机变量的分布及重要例子随机变量X 的 概率分布(概率函数

2013-02-26 18:03:01 1090

转载 公钥私钥及ssh公钥无密码登录

首先我们需要区分加密和认证这两个基本概念。加密是将数据资料加密,使得非法用户即使取得加密过的资料,也无法获取正确的资料内容,所以数据加密可以保护数据,防止监听攻击。其重点在于数据的安全性。身份认证是用来判断某个身份的真实性,确认身份后,系统才可以依不同的身份给予不同的权限。其重点在于用户的真实性。两者的侧重点是不同的。1. 公钥和私钥  其次我们还要了解公钥和私钥的概念和作用。

2013-02-25 15:48:17 406

原创 概率数理统计-- 1.3 事件的运算、条件概率与独立性

1.3.1 事件的蕴含、包含及相等1.3.2 事件的互斥和对立若两个事件A,B不能在同一试验中都发生,则称它们是互斥的对立事件: B =  |A不发生|1.3.3 事件的和(或称并)设有两个事件A,B, 定义一个新事件C,  C = {A发生、 或 B发生} = {A,B 至少发生一个}称 C = A+B (但不是 P(C) = P(

2013-02-21 18:08:33 1248

原创 线性代数--1.2 行化简与阶梯形矩阵

阶梯形矩阵 和 简化阶梯形矩阵行化简算法线性方程组的解解集的参数表示

2013-02-21 12:05:13 10304

原创 概率数理统计--1.2古典概率计算

1.2.1 排列组合的几个简单公式排列计较顺序, 组合不计较顺序。1.2.2 古典概率计算举例解法都是   事件发生的可能情况 / 所以可能发生情况

2013-02-20 13:44:18 1620

原创 概率数理统计--1.1 概率是什么

1.1 概率是什么概率,是表示某种事件出现的可能性大小的一种数量指标,它介于0与1之间。1.1.2 试验与事件概率论中,有时把单一的试验结果称为一个“基本事件”, 一个或一些基本事件并在一起,就构成一个事件, 而基本事件本身也是事件。如,掷骰子例子中,有1,2,...,6等6个基本事件。  事件E2(点数为偶数) 则是由2,3,5这三个基本事件并成。1.1.3 古典概率在“

2013-02-20 10:08:38 624

原创 线性代数--1.1 线性方程组

线性方程组的解有三种情况:1. 无解   [称该方程组 不相容]2. 有唯一解3. 有无穷多解矩阵记号x1 - 2 *x2 + x3 = 02 * x2 - 8 * x3 = 8-4 x1 + 5 x2 + 9 x3 = -9系数矩阵为:  1  -2   1        |   0   2   -8  |        -4   5

2013-02-19 12:01:44 351

敏捷实践--info

敏捷实践--info,info的mini书, 内容不错的,短小精悍~~

2011-06-15

Linux设备驱动开发详解 第三版 源码

Linux 设备驱动开发详解 第三版 源码,绝对的好东东哦。。。

2011-06-15

linux驱动 i2c源码分析

i2c源码分析, 绝对的好东东哦。。。。。。。

2011-06-15

《Web开发敏捷之道——应用Rails进行敏捷Web开发,第2版》书籍配套代码(zip)

《Web开发敏捷之道——应用Rails进行敏捷Web开发,第2版》书籍配套代码(zip) 资源很少的哦

2009-12-30

rmi个人心得及sun官方教程

里面有:java官方的rmi教程; 作者自己对rmi的一些看法。 值得一读

2009-12-02

Understand Java ClassLoader

对Java ClassLoader的原理,写的很出彩,值得一读

2009-12-02

java集合类线程安全.doc

java集合类线程安全 写的不错,短小精悍,值得一读

2009-12-02

一个SSH强悍小实例(源码+jsp+PPT)

公司用以培训新人的ssh实例。 内容简单易懂,但知识点覆盖的广

2009-12-02

struts2权威指南 (全)

struts2权威指南 不可多得好资料,希望大家喜欢

2009-12-02

LINUX C函数参考手册

LINUX C 函数参考手册 很全的C函数介绍 ,还有实例

2009-05-16

c语言百例 生动的实例有助于你掌握C语言

c语言百例 生动的实例有助于你掌握C语言

2009-02-23

MFC类库详解 MSDN + VC +中文

MFC类库详解 MSDN + VC +中文版

2009-02-23

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除