LeetCode Best Time to Buy and Sell Stock III

73 篇文章 1 订阅
13 篇文章 0 订阅

题目要求:

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most two transactions.

Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).


找寻一个点j,将原来的price[0..n-1]分割为price[0..j]和price[j..n-1],分别求两段的最大profit。

进行优化:

对于点j+1,求price[0..j+1]的最大profit时,很多工作是重复的,在求price[0..j]的最大profit中已经做过了。

类似于Best Time to Buy and Sell Stock,可以在O(1)的时间从price[0..j]推出price[0..j+1]的最大profit。

但是如何从price[j..n-1]推出price[j+1..n-1]?反过来思考,我们可以用O(1)的时间由price[j+1..n-1]推出price[j..n-1]。

最终算法:

数组l[i]记录了price[0..i]的最大profit,

数组r[i]记录了price[i..n]的最大profit。

已知l[i],求l[i+1]是简单的,同样已知r[i],求r[i-1]也很容易。

最后,我们再用O(n)的时间找出最大的l[i]+r[i],即为题目所求。


class Solution {
public:
  int maxProfit(vector<int> &prices) 
  {
    if(prices.size() == 0)
      return 0;
    int len = prices.size();
    int left[len];
    int right[len];
    memset(left, 0, sizeof(left));
    memset(right, 0, sizeof(right));
    int buy = prices[0];
    for(size_t i = 1; i < len; ++i)
    {
      left[i] = max(prices[i] - buy, left[i - 1]);
      buy = min(prices[i], buy);
    }
    buy = prices[len - 1];
    for(int i = len - 2; i >= 0; --i)
    {
      right[i] = max(buy - prices[i], right[i + 1]);
      buy = max(prices[i], buy);
    }
    int res = 0;
    for(size_t i = 0; i < len; ++i)
    {
      res = max(res, left[i] + right[i]);
    }
    return res;
  }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值