2021年最新-可解释机器学习相关研究最新论文、书籍、博客、资源整理分享

图片

    理解(interpret)表示用可被认知(understandable)的说法去解释(explain)或呈现(present)。在机器学习的场景中,可解释性(interpretability)就表示模型能够使用人类可认知的说法进行解释和呈现。[Finale Doshi-Velez]

    机器学习模型被许多人称为“黑盒”。这意味着虽然我们可以从中获得准确的预测,但我们无法清楚地解释或识别这些预测背后的逻辑。但是我们如何从模型中提取重要的见解呢?要记住哪些事项以及我们需要实现哪些功能或工具?这些是在提出模型可解释性问题时会想到的重要问题。

图片

    本文整理了可解释机器学习相关领域最新的论文,书籍、资源、博客等,分享给需要朋友。

    资源整理自网络,源地址:https://github.com/wangyongjie-ntu/Awesome-explainable-AI

    所有资源下载地址,见源地址。

    本资源含了近年来热门的可解释人工智能(XAI)的前沿研究。从下图我们可以看到可解释/可解释AI的趋势。关于这个主题的出版物正在蓬勃发展。

图片

    下图展示了XAI的几个用例。在这里,根据这个数字将出版物分成几个类别。

图片

研究性论文

    The elephant in the interpretability room: Why use attention as explanation when we have saliency methods, EMNLP Workshop 2020

    Explainable Machine Learning in Deployment, FAT 2020

    A brief survey of visualization methods for deep learning models from the perspective of Explainable AI, Information Visualization 2020

    Explaining Explanations in AI, ACM FAT 2019

    Machine learning interpretability: A survey on methods and metrics, Electronics, 2019

    A Survey on Explainable Artificial Intelligence (XAI): Towards Medical XAI, IEEE TNNLS 2020

    Interpretable machine learning: definitions, methods, and applications, Arxiv preprint 2019

    Visual Analytics in Deep Learning: An Interrogative Survey for the Next Frontiers, IEEE Transactions on Visualization and Computer Graphics, 2019

    Explainable Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI, Information Fusion, 2019

    Evaluating Explanation Without Ground Truth in Interpretable Machine Learning, Arxiv preprint 2019

    A survey of methods for explaining black box models, ACM Computing Surveys, 2018

    Explaining Explanations: An O

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lqfarmer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值