算法岗必读中文-0天吃掉pyspark实战

pyspark 🍎 or spark-scala 🔥 ?

    pyspark强于分析,spark-scala强于工程。

    如果应用场景有非常高的性能需求,应该选择spark-scala.

    如果应用场景有非常多的可视化和机器学习算法需求,推荐使用pyspark,可以更好地和python中的相关库配合使用。

    此外spark-scala支持spark graphx图计算模块,而pyspark是不支持的。

    资源整理自网络,书籍获取见源地址:https://github.com/lyhue1991/eat_pyspark_in_10_days

本书学习方案 ⏰

    1,学习计划

    本书是作者利用工作之余大概1个月写成的,大部分读者应该在10天可以完全学会。

    预计每天花费的学习时间在30分钟到2个小时之间。

    当然,本书也非常适合作为pyspark的工具手册在工程落地时作为范例库参考。

    点击学习内容蓝色标题即可进入该章节。

    书籍获取: 点击文末“阅读原文“”查看资源详情。

目录

内容截图

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lqfarmer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值