- 博客(453)
- 收藏
- 关注
原创 心法利器[133] | 为什么我的大模型效果不好
,效果提升的两个核心原因,新的有效信息和更好的信息处理模式,和上述的现象也是非常匹配的。随着业务迭代、信息更新,大模型肯定是需要更新的,对大功能、新功能级别的大更新,我们可以通过微调、调整prompt之类的模式来更新,但是如果是一两条说法,一两个bad case,次数比较频繁,显然微调模型的性价比低,敏捷度也不足,prompt也无法做很细节的雕刻,但是这类似的问题是数据库的优势,通过类似RAG之类的方式能快速解决这个问题,只要这个问题不解决,RAG类似的技术应该都不至于被淘汰。业务问题的边界界定。
2025-05-05 21:01:06
608
原创 前沿重器[62] | 综述解读:大模型在搜索推荐中的应用
搜索和推荐是长期备受关注的焦点领域,在大模型出来后,自然也开始了大量的尝试,而且大模型的尝试也开始突破原有的一些应用范式,原有常见的一些技术架构和思路也在被撼动,最近看到一篇相关的综述论文,重点讲解了最近大模型所催生出的“生成式”范式在推荐和搜索中的应用。有关文档和物料的更新。在进行训练后,给定输入模型总能输出一些文档或者物料的id,然而在实际应用中,文档和物料的更新是极为快速的,未遇到的、新的内容,总很难很快更新到模型里,当然,这也是目前各种以深度学习为基础的模型所有的毛病。对大模型的输入长度。
2025-04-20 21:03:35
728
原创 前沿重器[61] | Agentic RAG综述解读
进一步,有一种神奇的体验,因为阅历和经历的积累,其实已经积累了不少技术,而在后续看到很多新的东西后,发现里面有挺多内容都是之前已经玩过的,而经过新的包装和组合,能够达到更加优秀的结果,尤其是思想上的,例如同样是意图识别,现在仍旧是有必要使用的,思想层面可以理解为“拆分”的分治思想,将场景细分后专门处理,能有效提升各自的效果,这种模式逐步做好能提升整个系统最终的效果。具备任务或角色定义的大模型。翻译:https://zhuanlan.zhihu.com/p/1893616563510288868。
2025-04-13 21:02:14
563
转载 再添近20万字-CS的陋室2024年文章合集更新
叉烧,CS的陋室博主,资深算法工程师,主攻搜索、对话、NLP方向。文章合集2023以来的文章,时间覆盖23年10月至25年1月的文章,因为25年1月的文章是对24年的总结,因此也被收录,包括“前沿重器”和“心法利器”。心法利器系列专注于技术和个人思考,讲的东西属于自己探究型,分享自己的经验。”,可以获得所有文章合集的链接。”,可以获得22年的文章合集。”,可以获得23年的文章合集。”,可以获得24年的文章合集。
2025-04-06 21:00:33
29
转载 前沿重器[60] | RecSys24:LLMs知识增强推荐系统(上交&;华为)
信息差主要是,大模型在训练阶段,应该已经吸收了很多经典物料的特性,例如《罗马假日》这种作品,大模型了解的会比较多,因此描述的会比较好,但是新的作品类似《哪吒之魔童闹海》则只能依赖prompt中的提示,可能效果会比较差甚至会被《哪吒之魔童降世》影响。借助大模型对特定场景的关键因素进行抽取和规范化,文章中给出的例子是电影推荐场景,会问大模型:“列出决定用户是否对电影感兴趣的重要的因素或特征”,用这个方式即可规范后续用户偏好的描述维度,以便大模型进行更加有效的分析。用户偏好推理和物料事实描述。
2025-03-30 21:00:05
29
转载 前沿重器[60] | RecSys24:LLMs知识增强推荐系统(上交&;华为)
信息差主要是,大模型在训练阶段,应该已经吸收了很多经典物料的特性,例如《罗马假日》这种作品,大模型了解的会比较多,因此描述的会比较好,但是新的作品类似《哪吒之魔童闹海》则只能依赖prompt中的提示,可能效果会比较差甚至会被《哪吒之魔童降世》影响。借助大模型对特定场景的关键因素进行抽取和规范化,文章中给出的例子是电影推荐场景,会问大模型:“列出决定用户是否对电影感兴趣的重要的因素或特征”,用这个方式即可规范后续用户偏好的描述维度,以便大模型进行更加有效的分析。用户偏好推理和物料事实描述。
2025-03-30 21:00:05
16
转载 前沿重器[60] | RecSys24:LLMs知识增强推荐系统(上交&;华为)
信息差主要是,大模型在训练阶段,应该已经吸收了很多经典物料的特性,例如《罗马假日》这种作品,大模型了解的会比较多,因此描述的会比较好,但是新的作品类似《哪吒之魔童闹海》则只能依赖prompt中的提示,可能效果会比较差甚至会被《哪吒之魔童降世》影响。借助大模型对特定场景的关键因素进行抽取和规范化,文章中给出的例子是电影推荐场景,会问大模型:“列出决定用户是否对电影感兴趣的重要的因素或特征”,用这个方式即可规范后续用户偏好的描述维度,以便大模型进行更加有效的分析。用户偏好推理和物料事实描述。
2025-03-30 21:00:05
8
转载 前沿重器[60] | RecSys24:LLMs知识增强推荐系统(上交&;华为)
信息差主要是,大模型在训练阶段,应该已经吸收了很多经典物料的特性,例如《罗马假日》这种作品,大模型了解的会比较多,因此描述的会比较好,但是新的作品类似《哪吒之魔童闹海》则只能依赖prompt中的提示,可能效果会比较差甚至会被《哪吒之魔童降世》影响。借助大模型对特定场景的关键因素进行抽取和规范化,文章中给出的例子是电影推荐场景,会问大模型:“列出决定用户是否对电影感兴趣的重要的因素或特征”,用这个方式即可规范后续用户偏好的描述维度,以便大模型进行更加有效的分析。用户偏好推理和物料事实描述。
2025-03-30 21:00:05
6
转载 前沿重器[60] | RecSys24:LLMs知识增强推荐系统(上交&;华为)
信息差主要是,大模型在训练阶段,应该已经吸收了很多经典物料的特性,例如《罗马假日》这种作品,大模型了解的会比较多,因此描述的会比较好,但是新的作品类似《哪吒之魔童闹海》则只能依赖prompt中的提示,可能效果会比较差甚至会被《哪吒之魔童降世》影响。借助大模型对特定场景的关键因素进行抽取和规范化,文章中给出的例子是电影推荐场景,会问大模型:“列出决定用户是否对电影感兴趣的重要的因素或特征”,用这个方式即可规范后续用户偏好的描述维度,以便大模型进行更加有效的分析。用户偏好推理和物料事实描述。
2025-03-30 21:00:05
9
转载 前沿重器[60] | RecSys24:LLMs知识增强推荐系统(上交&;华为)
信息差主要是,大模型在训练阶段,应该已经吸收了很多经典物料的特性,例如《罗马假日》这种作品,大模型了解的会比较多,因此描述的会比较好,但是新的作品类似《哪吒之魔童闹海》则只能依赖prompt中的提示,可能效果会比较差甚至会被《哪吒之魔童降世》影响。借助大模型对特定场景的关键因素进行抽取和规范化,文章中给出的例子是电影推荐场景,会问大模型:“列出决定用户是否对电影感兴趣的重要的因素或特征”,用这个方式即可规范后续用户偏好的描述维度,以便大模型进行更加有效的分析。用户偏好推理和物料事实描述。
2025-03-30 21:00:05
17
转载 前沿重器[60] | RecSys24:LLMs知识增强推荐系统(上交&;华为)
信息差主要是,大模型在训练阶段,应该已经吸收了很多经典物料的特性,例如《罗马假日》这种作品,大模型了解的会比较多,因此描述的会比较好,但是新的作品类似《哪吒之魔童闹海》则只能依赖prompt中的提示,可能效果会比较差甚至会被《哪吒之魔童降世》影响。借助大模型对特定场景的关键因素进行抽取和规范化,文章中给出的例子是电影推荐场景,会问大模型:“列出决定用户是否对电影感兴趣的重要的因素或特征”,用这个方式即可规范后续用户偏好的描述维度,以便大模型进行更加有效的分析。用户偏好推理和物料事实描述。
2025-03-30 21:00:05
10
转载 前沿重器[60] | RecSys24:LLMs知识增强推荐系统(上交&;华为)
信息差主要是,大模型在训练阶段,应该已经吸收了很多经典物料的特性,例如《罗马假日》这种作品,大模型了解的会比较多,因此描述的会比较好,但是新的作品类似《哪吒之魔童闹海》则只能依赖prompt中的提示,可能效果会比较差甚至会被《哪吒之魔童降世》影响。借助大模型对特定场景的关键因素进行抽取和规范化,文章中给出的例子是电影推荐场景,会问大模型:“列出决定用户是否对电影感兴趣的重要的因素或特征”,用这个方式即可规范后续用户偏好的描述维度,以便大模型进行更加有效的分析。用户偏好推理和物料事实描述。
2025-03-30 21:00:05
14
转载 前沿重器[60] | RecSys24:LLMs知识增强推荐系统(上交&;华为)
信息差主要是,大模型在训练阶段,应该已经吸收了很多经典物料的特性,例如《罗马假日》这种作品,大模型了解的会比较多,因此描述的会比较好,但是新的作品类似《哪吒之魔童闹海》则只能依赖prompt中的提示,可能效果会比较差甚至会被《哪吒之魔童降世》影响。借助大模型对特定场景的关键因素进行抽取和规范化,文章中给出的例子是电影推荐场景,会问大模型:“列出决定用户是否对电影感兴趣的重要的因素或特征”,用这个方式即可规范后续用户偏好的描述维度,以便大模型进行更加有效的分析。用户偏好推理和物料事实描述。
2025-03-30 21:00:05
13
转载 前沿重器[60] | RecSys24:LLMs知识增强推荐系统(上交&;华为)
信息差主要是,大模型在训练阶段,应该已经吸收了很多经典物料的特性,例如《罗马假日》这种作品,大模型了解的会比较多,因此描述的会比较好,但是新的作品类似《哪吒之魔童闹海》则只能依赖prompt中的提示,可能效果会比较差甚至会被《哪吒之魔童降世》影响。借助大模型对特定场景的关键因素进行抽取和规范化,文章中给出的例子是电影推荐场景,会问大模型:“列出决定用户是否对电影感兴趣的重要的因素或特征”,用这个方式即可规范后续用户偏好的描述维度,以便大模型进行更加有效的分析。用户偏好推理和物料事实描述。
2025-03-30 21:00:05
18
转载 前沿重器[60] | RecSys24:LLMs知识增强推荐系统(上交&;华为)
信息差主要是,大模型在训练阶段,应该已经吸收了很多经典物料的特性,例如《罗马假日》这种作品,大模型了解的会比较多,因此描述的会比较好,但是新的作品类似《哪吒之魔童闹海》则只能依赖prompt中的提示,可能效果会比较差甚至会被《哪吒之魔童降世》影响。借助大模型对特定场景的关键因素进行抽取和规范化,文章中给出的例子是电影推荐场景,会问大模型:“列出决定用户是否对电影感兴趣的重要的因素或特征”,用这个方式即可规范后续用户偏好的描述维度,以便大模型进行更加有效的分析。用户偏好推理和物料事实描述。
2025-03-30 21:00:05
11
转载 前沿重器[60] | RecSys24:LLMs知识增强推荐系统(上交&;华为)
信息差主要是,大模型在训练阶段,应该已经吸收了很多经典物料的特性,例如《罗马假日》这种作品,大模型了解的会比较多,因此描述的会比较好,但是新的作品类似《哪吒之魔童闹海》则只能依赖prompt中的提示,可能效果会比较差甚至会被《哪吒之魔童降世》影响。借助大模型对特定场景的关键因素进行抽取和规范化,文章中给出的例子是电影推荐场景,会问大模型:“列出决定用户是否对电影感兴趣的重要的因素或特征”,用这个方式即可规范后续用户偏好的描述维度,以便大模型进行更加有效的分析。用户偏好推理和物料事实描述。
2025-03-30 21:00:05
10
转载 前沿重器[60] | RecSys24:LLMs知识增强推荐系统(上交&;华为)
信息差主要是,大模型在训练阶段,应该已经吸收了很多经典物料的特性,例如《罗马假日》这种作品,大模型了解的会比较多,因此描述的会比较好,但是新的作品类似《哪吒之魔童闹海》则只能依赖prompt中的提示,可能效果会比较差甚至会被《哪吒之魔童降世》影响。借助大模型对特定场景的关键因素进行抽取和规范化,文章中给出的例子是电影推荐场景,会问大模型:“列出决定用户是否对电影感兴趣的重要的因素或特征”,用这个方式即可规范后续用户偏好的描述维度,以便大模型进行更加有效的分析。用户偏好推理和物料事实描述。
2025-03-30 21:00:05
7
转载 前沿重器[60] | RecSys24:LLMs知识增强推荐系统(上交&;华为)
信息差主要是,大模型在训练阶段,应该已经吸收了很多经典物料的特性,例如《罗马假日》这种作品,大模型了解的会比较多,因此描述的会比较好,但是新的作品类似《哪吒之魔童闹海》则只能依赖prompt中的提示,可能效果会比较差甚至会被《哪吒之魔童降世》影响。借助大模型对特定场景的关键因素进行抽取和规范化,文章中给出的例子是电影推荐场景,会问大模型:“列出决定用户是否对电影感兴趣的重要的因素或特征”,用这个方式即可规范后续用户偏好的描述维度,以便大模型进行更加有效的分析。用户偏好推理和物料事实描述。
2025-03-30 21:00:05
10
转载 前沿重器[60] | RecSys24:LLMs知识增强推荐系统(上交&;华为)
信息差主要是,大模型在训练阶段,应该已经吸收了很多经典物料的特性,例如《罗马假日》这种作品,大模型了解的会比较多,因此描述的会比较好,但是新的作品类似《哪吒之魔童闹海》则只能依赖prompt中的提示,可能效果会比较差甚至会被《哪吒之魔童降世》影响。借助大模型对特定场景的关键因素进行抽取和规范化,文章中给出的例子是电影推荐场景,会问大模型:“列出决定用户是否对电影感兴趣的重要的因素或特征”,用这个方式即可规范后续用户偏好的描述维度,以便大模型进行更加有效的分析。用户偏好推理和物料事实描述。
2025-03-30 21:00:05
16
转载 前沿重器[60] | RecSys24:LLMs知识增强推荐系统(上交&;华为)
信息差主要是,大模型在训练阶段,应该已经吸收了很多经典物料的特性,例如《罗马假日》这种作品,大模型了解的会比较多,因此描述的会比较好,但是新的作品类似《哪吒之魔童闹海》则只能依赖prompt中的提示,可能效果会比较差甚至会被《哪吒之魔童降世》影响。借助大模型对特定场景的关键因素进行抽取和规范化,文章中给出的例子是电影推荐场景,会问大模型:“列出决定用户是否对电影感兴趣的重要的因素或特征”,用这个方式即可规范后续用户偏好的描述维度,以便大模型进行更加有效的分析。用户偏好推理和物料事实描述。
2025-03-30 21:00:05
8
转载 前沿重器[60] | RecSys24:LLMs知识增强推荐系统(上交&;华为)
信息差主要是,大模型在训练阶段,应该已经吸收了很多经典物料的特性,例如《罗马假日》这种作品,大模型了解的会比较多,因此描述的会比较好,但是新的作品类似《哪吒之魔童闹海》则只能依赖prompt中的提示,可能效果会比较差甚至会被《哪吒之魔童降世》影响。借助大模型对特定场景的关键因素进行抽取和规范化,文章中给出的例子是电影推荐场景,会问大模型:“列出决定用户是否对电影感兴趣的重要的因素或特征”,用这个方式即可规范后续用户偏好的描述维度,以便大模型进行更加有效的分析。用户偏好推理和物料事实描述。
2025-03-30 21:00:05
10
转载 前沿重器[60] | RecSys24:LLMs知识增强推荐系统(上交&;华为)
信息差主要是,大模型在训练阶段,应该已经吸收了很多经典物料的特性,例如《罗马假日》这种作品,大模型了解的会比较多,因此描述的会比较好,但是新的作品类似《哪吒之魔童闹海》则只能依赖prompt中的提示,可能效果会比较差甚至会被《哪吒之魔童降世》影响。借助大模型对特定场景的关键因素进行抽取和规范化,文章中给出的例子是电影推荐场景,会问大模型:“列出决定用户是否对电影感兴趣的重要的因素或特征”,用这个方式即可规范后续用户偏好的描述维度,以便大模型进行更加有效的分析。用户偏好推理和物料事实描述。
2025-03-30 21:00:05
5
转载 前沿重器[60] | RecSys24:LLMs知识增强推荐系统(上交&;华为)
信息差主要是,大模型在训练阶段,应该已经吸收了很多经典物料的特性,例如《罗马假日》这种作品,大模型了解的会比较多,因此描述的会比较好,但是新的作品类似《哪吒之魔童闹海》则只能依赖prompt中的提示,可能效果会比较差甚至会被《哪吒之魔童降世》影响。借助大模型对特定场景的关键因素进行抽取和规范化,文章中给出的例子是电影推荐场景,会问大模型:“列出决定用户是否对电影感兴趣的重要的因素或特征”,用这个方式即可规范后续用户偏好的描述维度,以便大模型进行更加有效的分析。用户偏好推理和物料事实描述。
2025-03-30 21:00:05
4
转载 前沿重器[60] | RecSys24:LLMs知识增强推荐系统(上交&;华为)
信息差主要是,大模型在训练阶段,应该已经吸收了很多经典物料的特性,例如《罗马假日》这种作品,大模型了解的会比较多,因此描述的会比较好,但是新的作品类似《哪吒之魔童闹海》则只能依赖prompt中的提示,可能效果会比较差甚至会被《哪吒之魔童降世》影响。借助大模型对特定场景的关键因素进行抽取和规范化,文章中给出的例子是电影推荐场景,会问大模型:“列出决定用户是否对电影感兴趣的重要的因素或特征”,用这个方式即可规范后续用户偏好的描述维度,以便大模型进行更加有效的分析。用户偏好推理和物料事实描述。
2025-03-30 21:00:05
4
转载 前沿重器[60] | RecSys24:LLMs知识增强推荐系统(上交&;华为)
信息差主要是,大模型在训练阶段,应该已经吸收了很多经典物料的特性,例如《罗马假日》这种作品,大模型了解的会比较多,因此描述的会比较好,但是新的作品类似《哪吒之魔童闹海》则只能依赖prompt中的提示,可能效果会比较差甚至会被《哪吒之魔童降世》影响。借助大模型对特定场景的关键因素进行抽取和规范化,文章中给出的例子是电影推荐场景,会问大模型:“列出决定用户是否对电影感兴趣的重要的因素或特征”,用这个方式即可规范后续用户偏好的描述维度,以便大模型进行更加有效的分析。用户偏好推理和物料事实描述。
2025-03-30 21:00:05
3
转载 前沿重器[60] | RecSys24:LLMs知识增强推荐系统(上交&;华为)
信息差主要是,大模型在训练阶段,应该已经吸收了很多经典物料的特性,例如《罗马假日》这种作品,大模型了解的会比较多,因此描述的会比较好,但是新的作品类似《哪吒之魔童闹海》则只能依赖prompt中的提示,可能效果会比较差甚至会被《哪吒之魔童降世》影响。借助大模型对特定场景的关键因素进行抽取和规范化,文章中给出的例子是电影推荐场景,会问大模型:“列出决定用户是否对电影感兴趣的重要的因素或特征”,用这个方式即可规范后续用户偏好的描述维度,以便大模型进行更加有效的分析。用户偏好推理和物料事实描述。
2025-03-30 21:00:05
4
转载 前沿重器[60] | RecSys24:LLMs知识增强推荐系统(上交&;华为)
信息差主要是,大模型在训练阶段,应该已经吸收了很多经典物料的特性,例如《罗马假日》这种作品,大模型了解的会比较多,因此描述的会比较好,但是新的作品类似《哪吒之魔童闹海》则只能依赖prompt中的提示,可能效果会比较差甚至会被《哪吒之魔童降世》影响。借助大模型对特定场景的关键因素进行抽取和规范化,文章中给出的例子是电影推荐场景,会问大模型:“列出决定用户是否对电影感兴趣的重要的因素或特征”,用这个方式即可规范后续用户偏好的描述维度,以便大模型进行更加有效的分析。用户偏好推理和物料事实描述。
2025-03-30 21:00:05
5
转载 前沿重器[60] | RecSys24:LLMs知识增强推荐系统(上交&;华为)
信息差主要是,大模型在训练阶段,应该已经吸收了很多经典物料的特性,例如《罗马假日》这种作品,大模型了解的会比较多,因此描述的会比较好,但是新的作品类似《哪吒之魔童闹海》则只能依赖prompt中的提示,可能效果会比较差甚至会被《哪吒之魔童降世》影响。借助大模型对特定场景的关键因素进行抽取和规范化,文章中给出的例子是电影推荐场景,会问大模型:“列出决定用户是否对电影感兴趣的重要的因素或特征”,用这个方式即可规范后续用户偏好的描述维度,以便大模型进行更加有效的分析。用户偏好推理和物料事实描述。
2025-03-30 21:00:05
3
转载 前沿重器[60] | RecSys24:LLMs知识增强推荐系统(上交&;华为)
信息差主要是,大模型在训练阶段,应该已经吸收了很多经典物料的特性,例如《罗马假日》这种作品,大模型了解的会比较多,因此描述的会比较好,但是新的作品类似《哪吒之魔童闹海》则只能依赖prompt中的提示,可能效果会比较差甚至会被《哪吒之魔童降世》影响。借助大模型对特定场景的关键因素进行抽取和规范化,文章中给出的例子是电影推荐场景,会问大模型:“列出决定用户是否对电影感兴趣的重要的因素或特征”,用这个方式即可规范后续用户偏好的描述维度,以便大模型进行更加有效的分析。用户偏好推理和物料事实描述。
2025-03-30 21:00:05
7
转载 前沿重器[60] | RecSys24:LLMs知识增强推荐系统(上交&;华为)
信息差主要是,大模型在训练阶段,应该已经吸收了很多经典物料的特性,例如《罗马假日》这种作品,大模型了解的会比较多,因此描述的会比较好,但是新的作品类似《哪吒之魔童闹海》则只能依赖prompt中的提示,可能效果会比较差甚至会被《哪吒之魔童降世》影响。借助大模型对特定场景的关键因素进行抽取和规范化,文章中给出的例子是电影推荐场景,会问大模型:“列出决定用户是否对电影感兴趣的重要的因素或特征”,用这个方式即可规范后续用户偏好的描述维度,以便大模型进行更加有效的分析。用户偏好推理和物料事实描述。
2025-03-30 21:00:05
4
转载 前沿重器[60] | RecSys24:LLMs知识增强推荐系统(上交&;华为)
信息差主要是,大模型在训练阶段,应该已经吸收了很多经典物料的特性,例如《罗马假日》这种作品,大模型了解的会比较多,因此描述的会比较好,但是新的作品类似《哪吒之魔童闹海》则只能依赖prompt中的提示,可能效果会比较差甚至会被《哪吒之魔童降世》影响。借助大模型对特定场景的关键因素进行抽取和规范化,文章中给出的例子是电影推荐场景,会问大模型:“列出决定用户是否对电影感兴趣的重要的因素或特征”,用这个方式即可规范后续用户偏好的描述维度,以便大模型进行更加有效的分析。用户偏好推理和物料事实描述。
2025-03-30 21:00:05
5
转载 前沿重器[60] | RecSys24:LLMs知识增强推荐系统(上交&;华为)
信息差主要是,大模型在训练阶段,应该已经吸收了很多经典物料的特性,例如《罗马假日》这种作品,大模型了解的会比较多,因此描述的会比较好,但是新的作品类似《哪吒之魔童闹海》则只能依赖prompt中的提示,可能效果会比较差甚至会被《哪吒之魔童降世》影响。借助大模型对特定场景的关键因素进行抽取和规范化,文章中给出的例子是电影推荐场景,会问大模型:“列出决定用户是否对电影感兴趣的重要的因素或特征”,用这个方式即可规范后续用户偏好的描述维度,以便大模型进行更加有效的分析。用户偏好推理和物料事实描述。
2025-03-30 21:00:05
2
转载 前沿重器[60] | RecSys24:LLMs知识增强推荐系统(上交&;华为)
信息差主要是,大模型在训练阶段,应该已经吸收了很多经典物料的特性,例如《罗马假日》这种作品,大模型了解的会比较多,因此描述的会比较好,但是新的作品类似《哪吒之魔童闹海》则只能依赖prompt中的提示,可能效果会比较差甚至会被《哪吒之魔童降世》影响。借助大模型对特定场景的关键因素进行抽取和规范化,文章中给出的例子是电影推荐场景,会问大模型:“列出决定用户是否对电影感兴趣的重要的因素或特征”,用这个方式即可规范后续用户偏好的描述维度,以便大模型进行更加有效的分析。用户偏好推理和物料事实描述。
2025-03-30 21:00:05
2
转载 前沿重器[60] | RecSys24:LLMs知识增强推荐系统(上交&;华为)
信息差主要是,大模型在训练阶段,应该已经吸收了很多经典物料的特性,例如《罗马假日》这种作品,大模型了解的会比较多,因此描述的会比较好,但是新的作品类似《哪吒之魔童闹海》则只能依赖prompt中的提示,可能效果会比较差甚至会被《哪吒之魔童降世》影响。借助大模型对特定场景的关键因素进行抽取和规范化,文章中给出的例子是电影推荐场景,会问大模型:“列出决定用户是否对电影感兴趣的重要的因素或特征”,用这个方式即可规范后续用户偏好的描述维度,以便大模型进行更加有效的分析。用户偏好推理和物料事实描述。
2025-03-30 21:00:05
2
转载 前沿重器[60] | RecSys24:LLMs知识增强推荐系统(上交&;华为)
信息差主要是,大模型在训练阶段,应该已经吸收了很多经典物料的特性,例如《罗马假日》这种作品,大模型了解的会比较多,因此描述的会比较好,但是新的作品类似《哪吒之魔童闹海》则只能依赖prompt中的提示,可能效果会比较差甚至会被《哪吒之魔童降世》影响。借助大模型对特定场景的关键因素进行抽取和规范化,文章中给出的例子是电影推荐场景,会问大模型:“列出决定用户是否对电影感兴趣的重要的因素或特征”,用这个方式即可规范后续用户偏好的描述维度,以便大模型进行更加有效的分析。用户偏好推理和物料事实描述。
2025-03-30 21:00:05
1
原创 心法利器[132] | 大模型系统性能优化trick
举一个例子,推荐系统场景,如果等用户去刷新页面,才从头开始去做用户embedding、所有的内容理解,显然并不现实,然而,如果把工作拆解,例如一些比较固定的用户理解工作,物料的理解工作,放到非实时完成,实时只需要把embedding拿出来做物料召回、排序啥的,此时在线的耗时就会大大降低,离线我们有充足的时间去做计算,这块的技术在大模型有之前就已经有比较完善的探索研究工作,毕竟推荐系统发展已经很久,在海量数据的压力下,离线高并发并行处理,类似的大数据工作早有经验,大模型相关的流程也同样可以放在其中。
2025-03-23 21:01:27
875
转载 清华人大上交大教授领衔,DeepSeek时代中国生成式AI大会4月举行!Manus最强平替和杭州六小龙之一也来了
我们提出了一种用于双臂机器人操作的扩散基座模型——Robotics Diffusion Transformer(RDT),该模型以扩散模型作为基础,能够有效地表示多峰的人类动作分布,并采用可扩展的Transformer架构来处理异构的多模态输入,捕捉机器人数据中的非线性和高频特性。本次演讲提出LightThinker,一种基于动态思维压缩的推理加速方法,其核心是通过训练的方式让LLM在合适的时机自主压缩冗长的思维为紧凑的表征,并基于压缩后的内容继续推理,从而降低显存开销,提升推理速度。
2025-03-20 08:06:42
74
原创 前沿重器[59] | 淘宝LLM落地电商推荐实践启示
左边的方式是把LLM当做是特征提取器,旨在把用户和物料原始信息设计成prompt的模式,用LLM生成对应结果来进行表征。物料理解一直是推荐系统中比较困难的部分,在电商领域,各种商品的物料信息是非常复杂的,简单的muilti-hot的模式,在各种商品下,拓展性不高,而且数据非常稀疏,再者商品类目下还有些内容层面,不好做属性描述,文章举的例子是“特价”、“爆砍”等,而这里我还想补充类似“女朋友看到都哭了”、“儿童节”之类的,简单的文本编码显然不能很好地收集到这些信息,而这些正好是大模型所擅长的。
2025-03-16 21:00:46
1041
原创 心法利器[131] | 盘点踩过大模型多轮对话的坑
心法利器本栏目主要和大家一起讨论近期自己学习的心得和体会。具体介绍:仓颉专项:飞机大炮我都会,利器心法我还有。2023年新的文章合集已经发布,获取方式看这里:又添十万字-CS的陋室2023年文章合集来袭,更有历史文章合集,欢迎下载。往期回顾心法利器[126] | 24年算法思考-小模型的生存空间心法利器[127] | 24年算法思考-特征工程和经典深度学习心法利器[128] | 2024年算法小结...
2025-03-09 21:00:19
861
原创 心法利器[130] | RAG效果调优经验
心法利器本栏目主要和大家一起讨论近期自己学习的心得和体会。具体介绍:仓颉专项:飞机大炮我都会,利器心法我还有。2023年新的文章合集已经发布,获取方式看这里:又添十万字-CS的陋室2023年文章合集来袭,更有历史文章合集,欢迎下载。往期回顾心法利器[125] | 24年算法思考-RAG技术论文和实践小结心法利器[126] | 24年算法思考-小模型的生存空间心法利器[127] | 24年算法思考-...
2025-03-02 21:02:24
587
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人