历史最全基于 图形和表格数据的联邦学习 论文数据及架构整理分享

    联邦学习(Federated Learning)是一种分布式机器学习技术,其核心思想是通过在多个拥有本地数据的数据源之间进行分布式模型训练,在不需要交换本地个体或样本数据的前提下,仅通过交换模型参数或中间结果的方式,构建基于虚拟融合数据下的全局模型,从而实现数据隐私保护和数据共享计算的平衡,即“数据可用不可见”、“数据不动模型动”的应用新范式。

    本资源整理了全基于 图形和表格数据的联邦学习 论文数据及架构,分享给大家。

    

     资源整理自网络,下载及获取见源地址:https://github.com/youngfish42/Awesome-Federated-Learning-on-Graph-and-Tabular-Data

目录

内容截图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lqfarmer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值