元学习(Meta Learning)最全论文、视频、书籍资源整理

Meta Learning,叫做元学习或者 Learning to Learn 学会学习,包括Zero-Shot/One-Shot/Few-Shot 学习,模型无关元学习(Model Agnostic Meta Learning)和元强化学习(Meta Reinforcement Learning)。元学习是人工智能领域,继深度学习是人工智能领域,继深度学习 -> 深度强化学习、生成对抗之后,又一个重要的研究分支,也是是近期的研究热点,加州伯克利大学在这方面做了大量工作。

本文详细整理了元学习相关的经典文章、代码、书籍、博客、视频教程、数据集等其他资源,提供给需要的朋友。

内容整理自网络,资源原地址:https://github.com/ZHANGHeng19931123/awesome-video-object-detection

目录

经典论文和代码

书籍

博客

视频教程

数据集

论坛集合

知名研究者

经典论文和代码

资源详细列表如下。

Zero-Shot / One-Shot / Few-Shot 学习

Siamese Neural Networks for One-shot Image Recognition, (2015), Gregory Koch, Richard Zemel, Ruslan Salakhutdinov.

Prototypical Networks for Few-shot Learning, (2017), Jake Snell, Kevin Swersky, Richard S. Zemel.

Gaussian Prototypical Networks for Few-Shot Learning on Omniglot (2017), Stanislav Fort.

Matching Networks for One Shot Learning, (2017), Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, Daan Wierstra.

Learning to Compare: Relation Network for Few-Shot Learning, (2017), Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip H.S. Torr, Timothy M. Hospedales.

One-shot Learning with Memory-Augmented Neural Networks, (2016), Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, Timothy Lillicrap.

Optimization as a Model for Few-Shot Learning, (2016), Sachin Ravi and Hugo Larochelle.

An embarrassingly simple approach to zero-shot learning, (2015), B Romera-Paredes, Philip H. S. Torr.

Low-shot Learning by Shrinking and Hallucinating Features, (2017), Bharath Hariharan, Ross Girshick.

Low-shot learning with large-scale diffusion, (2018), Matthijs Douze, Arthur Szlam, Bharath Hariharan, Hervé Jégou.

Low-Shot Learning with Imprinted Weights, (2018), Hang Qi, Matthew Brown, David G. Lowe.

One-Shot Video Object Segmentation, (2017), S. Caelles and K.K. Maninis and J. Pont-Tuset and L. Leal-Taixe' and D. Cremers and L. Van Gool.

One-Shot Learning for Semantic Segmentation, (2017), Amirreza Shaban, Shray Bansal, Zhen Liu, Irfan Essa, Byron Boots. <

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lqfarmer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值