最短路径练习

**

最短路径练习模板

**
1.Floyd算法

#include<iostream>
#include<cstdio>
using namespace std;
const int INF=1e6;
const int NUM=105;
int arr[NUM][NUM];
int n,m;
//邻接矩阵
void floyd(void)
{
    int s=1;
    for(int k=1; k<=n; k++)
        for(int i=1; i<=n; i++)
            if(arr[i][k]!=INF)
                for(int j=1; j<=n; j++)
                {
                    if(arr[i][j]>arr[i][k]+arr[k][j])
                        arr[i][j]=arr[i][k]+arr[k][j];
                }
        cout<<arr[s][n]<<endl;
}
int main()
{
    while(~scanf("%d%d",&n,&m))
    {
        if(n==0&&m==0)
            return 0;
        for(int i=1; i<=n; i++)
        {
            for(int j=1; j<=n; j++)
                    arr[i][j]=INF;
        }
        while(m--)
        {
            int a,b,c;
            scanf("%d%d%d",&a,&b,&c);

                arr[a][b]=arr[b][a]=c;
        }
        floyd();
    }
    return 0;
}

2.bellman-ford算法

#include<bits/stdc++.h>
using namespace std;
const int INF=1e6;
const int NUM=105;
struct edge
{
    int u,v,w;
}e[10005];
int n,m,cnt;
int pre[NUM];
//打印路径
void print_path(int s,int t)
{
    if(s==t)
    {
        printf("%d ",s);
        return ;
    }
    print_path(s,pre[t]);
    printf("%d\n",t);
}
//数组存边
void bellman()
{
    int s=1;
    int d[NUM];
    for(int i=1;i<=n;i++)
    {
        d[i]=INF;
    }
    d[s]=0;
    for(int k=1;k<=n;k++)
    {
        for(int i=1;i<=cnt;i++)
        {
            int x=e[i].u,y=e[i].v;
            if(d[x]>d[y]+e[i].w)
            {
                d[x]=d[y]+e[i].w;
                pre[x]=y;
            }
        }
    }
    printf("%d\n",d[n]);
    print_path(s,n);
}
//可以判断有无负圈
/*
void bellman()
{
    int s=1;
    int d[NUM];
    for(int i=2;i<=n;i++)
    {
        d[i]=INF;
    }
    d[1]=0;
    int k=0;
    bool update=true;
    while(update)
    {
        k++;
        update=false;
        if(k>n)
        {
            printf("有负圈\n");
            return ;
        }
         for(int i=0;i<=cnt;i++)
        {
            int x=e[i].u,y=e[i].v;
            if(d[x]>d[y]+e[i].w)
            {
                update=true;
                d[x]=d[y]+e[i].w;
            }
        }
    }
    printf("%d\n",d[n]);
}
*/
//邻接矩阵
/*
void bellman()
{
    int s=1;
    for(int i=1;i<=n;i++)
    {
        d[i]=INF;
    }
    d[s]=0;
    for(int k=1;k<=n;k++)
    {
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
                if(d[j]>d[i]+graph[i][j])
                d[j]=d[i]+graph[i][j];
        }
    }
    printf("%d\n",d[n]);
}
*/
int main()
{
    while(~scanf("%d%d",&n,&m))
    {
        if(n==0&&m==0)return 0;
        cnt=0;
        while(m--)
        {
            int a,b,c;
            scanf("%d%d%d",&a,&b,&c);
            e[cnt].u=a;
            e[cnt].v=b;
            e[cnt].w=c;
            cnt++;
            e[cnt].u=b;
            e[cnt].v=a;
            e[cnt].w=c;
            cnt++;
        }
        bellman();
    }
    return 0;
}

3.SPFA
邻接表+队列

#include<bits/stdc++.h>
using namespace std;
const int INF=1e6;
const int NUM=105;
struct edge
{
    int from,to,w;
    edge(int a,int b,int c){
    from=a;to=b;w=c;}
};
vector <edge>e[NUM];
int n,m;
int pre[NUM];
void print_path(int s,int t)
{
    if(s==t)
    {
        printf("%d ",s);
        return ;
    }
    print_path(s,pre[t]);
    printf("%d\n",t);
}
int spfa(int s)
{
    int dis[NUM];
    bool ing[NUM];
    int Neg[NUM];
    memset(Neg,0,sizeof(Neg));
    Neg[s]=1;
    for(int i=1;i<n;i++)
    {
        dis[i]=INF;ing[i]=false;
    }
    dis[s]=0;
    queue<int >Q;
    Q.push(s);
    ing[s]=true;
    while(!Q.empty())
    {
        int u=Q.front();
        Q.pop();
        ing[u]=false;
        for(int i=0;i<e[u].size();i++)
        {
            int v=e[u][i].to,w=e[u][i].w;
            if(dis[u]+w<dis[v])
            {
                dis[v]=dis[u]+w;
                pre[v]=u;
                if(!ing[v])
                {
                    ing[v]=true;
                    Q.push(v);
                    Neg[v]++;
                    if(Neg[v]>n)
                        return 1;
                }
            }
        }
    }
    printf("%d\n",dis[n]);
    //print_path(s,n);
    return 0;
}
int main()
{
    while(~scanf("%d%d",&n,&m))
    {
        if(n==0&&m==0)return 0;
        for(int i=1;i<=n;i++)
        {
            e[i].clear();
        }
        while(m--)
        {
            int a,b,c;
            scanf("%d%d%d",&a,&b,&c);
            e[a].push_back(edge(a,b,c));
            e[b].push_back(edge(b,a,c));

        }
        spfa(1);
    }
    return 0;
}


链式前向星

#include<bits/stdc++.h>
using namespace std;
const int INF=INT_MAX/10;
const int NUM=1000005;
struct Edge
{
    int  to,next,w;
}edge[NUM];
int n,m,cnt;
int pre[NUM];
int dis[NUM];
int head[NUM];
bool ing[NUM];
int Neg[NUM];
void print_path(int s,int t)
{
    if(s==t)
    {
        printf("%d ",s);
        return ;
    }
    print_path(s,pre[t]);
    printf("%d\n",t);
}
void  init()
{
    for(int i=0;i<NUM;i++)
    {
        edge[i].next=-1;
        head[i]=-1;

    }
    cnt=0;
}
void addedge(int u,int v,int w)
{
    edge[cnt].to=v;
    edge[cnt].w=w;
    edge[cnt].next=head[u];
    head[u]=cnt++;
}
int spfa(int s)
{

    memset(Neg,0,sizeof(Neg));
    Neg[s]=1;
    for(int i=1;i<n;i++)
    {
        dis[i]=INF;ing[i]=false;
    }
    dis[s]=0;
    queue<int >Q;
    Q.push(s);
    ing[s]=true;
    while(!Q.empty())
    {
        int u=Q.front();
        Q.pop();
        ing[u]=false;
        for(int i=head[u];~1;i=edge[i].next)
        {
            int v=edge[i].to,w=edge[i].w;
            if(dis[u]+w<dis[v])
            {
                dis[v]=dis[u]+w;
                pre[v]=u;
                if(!ing[v])
                {
                    ing[v]=true;
                    Q.push(v);
                    Neg[v]++;
                    if(Neg[v]>n)
                        return 1;
                }
            }
        }
    }
    printf("%d\n",dis[n]);
    //print_path(s,n);
    return 0;
}
int main()
{
    while(~scanf("%d%d",&n,&m))
    {
        init();
        if(n==0&&m==0)return 0;
        while(m--)
        {
            int a,b,c;
            scanf("%d%d%d",&a,&b,&c);
            addedge(a,b,c);
            addedge(b,a,c);
        }
        spfa(1);
    }
    return 0;
}


4.Dijkstra

#include<bits/stdc++.h>
using namespace std;
const int INF=1e6;
const int NUM=105;
struct edge
{
    int from,to,w;
    edge(int a,int b,int c)
    {
        from=a;
        to=b;
        w=c;
    }
};
vector <edge>e[NUM];
struct s_node
{
    int id,n_dis;
    s_node(int b,int c)
    {
        id=b;
        n_dis=c;
    }
    bool operator<(const s_node&a)const
    {
        return n_dis>a.n_dis;
    }
};
int n,m;
int pre[NUM];
void print_path(int s,int t)
{
    if(s==t)
    {
        printf("%d ",s);
        return ;
    }
    print_path(s,pre[t]);
    printf("%d\n",t);
}
void dijkstra()
{
    int s=1;
    int dis[NUM];
    bool done[NUM];
    for(int i=1; i<n; i++)
    {
        dis[i]=INF;
        done[i]=false;
    }
    dis[s]=0;
    priority_queue<s_node>Q;
    Q.push(s_node(s,dis[s]));
    while(!Q.empty())
    {
        s_node u=Q.top();
        Q.pop();
        if(done[u.id])
            continue;
        done[u.id]=true;
        for(int i=0; i<e[u.id].size(); i++)
        {
            edge y=e[u.id][i];
            if(done[y.to])
                continue;
            if(dis[y.to]>y.w+u.n_dis)
            {
                dis[y.to]=y.w+u.n_dis;
                Q.push(s_node(y.to,dis[y.to]));
                pre[y.to]=u.id;
            }
        }
    }
    printf("%d\n",dis[n]);
    //print_path(s,n);

}
int main()
{
    while(~scanf("%d%d",&n,&m))
    {
        if(n==0&&m==0)
            return 0;
        for(int i=1; i<=n; i++)
        {
            e[i].clear();
        }
        while(m--)
        {
            int a,b,c;
            scanf("%d%d%d",&a,&b,&c);
            e[a].push_back(edge(a,b,c));
            e[b].push_back(edge(b,a,c));

        }
        dijkstra();
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值