- 博客(5)
- 收藏
- 关注
原创 绘图与数据可视化I——二维绘图
心得体会: 用MWORK绘图,画二锥曲线,输入方程即现图形,参数调整实时响应,数学概念可视化变得轻松。函数图像绘制便捷,复杂函数也能快速精准呈现,还能随心调整样式。直方图能直观展示数据分布,参数设置简单。
2025-05-15 10:46:07
185
原创 《数据可视化》—— 基于Python的应用
心得体会: 数据可视化是统计学与Python结合的桥梁,它不仅让数据“说话”,还让数据“讲故事”。在学习《数据可视化》的过程中,我通过实践掌握了如何利用Python绘制各类统计图,这不仅提升了我的数据分析能力,也让我对统计学有了更深刻的理解。
2025-05-08 08:41:08
189
原创 数据的直观分析及可视化
通过使用`seaborn`库绘制多种类型的图表,我体会到了合理生成和组织数据的重要性,不同类型的图表适用于不同的数据分析需求,`seaborn`可以快速生成美观且易于理解的图表,提高数据分析效率。通过绘制椭圆,我体会到了参数方程的应用和数据范围选择的重要性,合理设置标题、坐标轴标签和网格线可以使图表更加清晰易读,使用`plt.axis('equal')`确保图形等比例显示,避免变形。良好的代码组织和注释也提升了代码的可读性和维护性。这次实践加深了我对数学绘图的理解,并提升了我的编程技能。
2025-04-03 11:06:43
358
原创 雷达图、箱型图
心得体会:通过使用`matplotlib`和`pandas`库,我创建了一个多组雷达图来比较不同学生在各个学科上的表现。定义通用的绘制函数`make_spider`简化了代码结构,并利用极坐标系设置和颜色调色板提升了图表的美观性和可读性。这次实践加深了我对数据可视化的理解和编程技能。心得体会:通过制作雷达图,我认识到数据准备和函数封装的重要性,正确设置极坐标系和使用颜色调色板可以提升图表的美观性和可读性。合理布局和添加注释进一步优化了整个过程,加深了我的数据可视化和编程技能。
2025-04-03 10:20:25
244
原创 折线图、直方图、面积图、散点图、气泡图
利用 `plt.subplots(1, 2, sharex=True, sharey=True)` 创建共享轴的子图,使用 `ax.plot` 绘制收盘价,`ax.fill_between` 填充区域,并通过设置透明度和线条宽度提升视觉效果。此外,我还使用了 `ax.grid(True)` 添加网格线、`ax.label_outer()` 隐藏外部标签、`fig.suptitle` 设置全局标题以及 `fig.autofmt_xdate()` 自动调整日期标签角度,使图表更加美观和易读。
2025-04-03 10:10:01
243
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅