数据离散化

本文探讨了数据离散化在数据挖掘过程中的重要性,通过实例展示了如何使用PyTorch进行数据预处理,包括连续数值型特征的离散化处理,以提升模型的训练效果和预测准确性。
摘要由CSDN通过智能技术生成
import pandas as pd
import numpy as np
if __name__ == '__main__':
  datafile = 'discretization_data.xlsx'  # 参数初始化
  data = pd.read_excel(datafile)  # 读取数据
  data = data[u'肝气郁结证型系数'].copy()
  k = 4

  d1 = pd.cut(data, k, labels = range(k))  # 等宽离散化,各个类比依次命名为0,1,2,3

#等频率离散化
  w = [1.0*i/k for i in range(k+1)]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值