import pandas as pd
import numpy as np
if __name__ == '__main__':
datafile = 'discretization_data.xlsx' # 参数初始化
data = pd.read_excel(datafile) # 读取数据
data = data[u'肝气郁结证型系数'].copy()
k = 4
d1 = pd.cut(data, k, labels = range(k)) # 等宽离散化,各个类比依次命名为0,1,2,3
#等频率离散化
w = [1.0*i/k for i in range(k+1)]
数据离散化
本文探讨了数据离散化在数据挖掘过程中的重要性,通过实例展示了如何使用PyTorch进行数据预处理,包括连续数值型特征的离散化处理,以提升模型的训练效果和预测准确性。
摘要由CSDN通过智能技术生成