Huffman编解码

本文介绍了Huffman编码的原理,它是一种基于信源概率统计的无失真编码方式,通过创建Huffman树来实现。实验流程包括编码和解码两部分,通过扫描文件计算字符频率,构建Huffman树,并进行编码和解码操作。程序通过C语言实现,包含主工程和库工程,支持命令行参数解析,能够对文件进行Huffman编码和解码。
摘要由CSDN通过智能技术生成

.实验原理

1.Huffman编码

(1) Huffman Coding(霍夫曼编码)是一种无失真编码的编码方式,Huffman编码是可变字长编码(VLC)的一种。

(2) Huffman编码基于信源的概率统计模型,它的基本思路是,出现概率大的信源符号编长码,出现概率小的信源符号编短码,从而使平均码长最小。

(3)在程序实现中常使用一种叫做树的数据结构实现Huffman编码,由它编出的码是即时码。

2.Huffman编码方法

(1)将文件以ASCII字符流的形式读入,统计每个符号的发生频率;

(4)重复3,直到最后得到和为1的根节点;

3.Huffman编码的数据结构

(1)Huffman节点结构


typedef struct huffman_node_tag
{
	unsigned char isLeaf;   //是否为树叶(叶节点),1代表是,0代表否
	unsigned long count;    //节点代表的符号加权和
	struct huffman_node_tag *parent;   //父节点指针

	union   //共同体
	{
		struct
		{
			struct huffman_node_tag *zero, *one;   //如果不是叶节点,则此项为该节点左右孩子指针
		};
		unsigned char symbol;   //若是叶节点,则此项为symbol,表示某个信源符号(1字节)
	};
} huffman_node;

(2)Huffman码结构

typedef struct huffman_code_tag
{
	/* The length of this code in bits. */
	unsigned long numbits;   //码字长度,单位:位

	/* 码字的第1位存于bits[0]的第1位,  
       码字的第2位存于bits[0]的第的第2位, 
       码字的第8位存于bits[0]的第的第8位, 
       码字的第9位存于bits[1]的第的第1位 */ 
	unsigned char *bits;   //指向该码比特串的指针
} huffman_code;

.试验流程

1.Huffman编码流程


2.Huffman解码流程


.主要代码分析

该程序包括两个工程,

Huffman编解码是一种用于数据压缩和解压缩的算法。其原理基于字符出现的频率来构建一棵Huffman树,并通过不同的编码方式来表示每个字符,以实现最优的压缩效果。 Huffman编码过程首先统计所有字符出现的频率,并将其作为树节点的权值。然后,根据频率构建一个森林,森林中每个节点都是一个树。接下来,取出森林中权值最小的两棵树,将它们合并为一棵树。并将合并后的树插入森林中。重复此过程,直到森林中只剩下一棵树,即Huffman树。 Huffman树的构建采用贪心算法,即每次选择频率最小的两个节点进行组合。合并生成的新节点的权值为这两个节点的权值之和,并将其作为树的根节点。左子树编码为0,右子树编码为1。通过不断合并和编码操作,生成了一颗Huffman树。 编码过程中,根据Huffman树的路径从根节点到叶子节点的编码规则,对每个字符进行编码。由于Huffman树的构建过程中,频率高的字符位于树的顶部,而频率低的字符位于树的底部,所以频率高的字符编码较短,频率低的字符编码较长,从而实现了数据的压缩效果。 解码过程中,根据Huffman树的编码规则,从根节点开始,依次读取编码位,并根据位的值来选择左子树或右子树,直到达到叶子节点,找到对应的字符。 通过Huffman编解码原理,可以有效地对数据进行压缩和解压缩,提高数据传输和存储的效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值