SVM支持向量机原理详解及代码解析

1. SVM底层原理详细分析

支持向量机(SVM)是一种监督学习模型,核心思想是通过寻找一个最优超平面,最大化不同类别数据之间的间隔。以下是其底层原理的详细分析:

1.1 线性可分与超平面

- 超平面方程:在特征空间中,超平面表示为 w⋅x+b=0,其中 w 是法向量,b 是位移项。
- 间隔最大化:SVM 的目标是找到使得两类样本间隔最大的超平面。间隔定义为最近样本到超平面的距离,计算公式为\frac{2}{\left \| W \right \|},最大化间隔等价于最小化\left \| W \right \|^{^{2}}

1.2 优化问题

- 原始问题:  
  $$\min_{\mathbf{w}, b} \frac{1}{2} \|\mathbf{w}\|^2 \quad \text{s.t.} \quad y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \geq 1, \forall i$$
- 对偶问题:通过拉格朗日乘数法转化为对偶形式,利用核技巧处理非线性问题:
  $$\max_{\alpha} \sum \alpha_i - \frac{1}{2} \sum \alpha_i \alpha_j y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j \quad \text{s.t.} \quad \alpha_i \geq 0, \sum \alpha_i y_i = 0$$

1.3 软间隔与核方法

- 软间隔:引入松弛变量 $\xi_i$ 处理噪声,优化目标变为:
  $$\min \frac{1}{2} \|\mathbf{w}\|^2 + C \sum \xi_i \quad \text{s.t.} \quad y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \geq 1 - \xi_i$$
- 核函数:通过核函数(如高斯核)将数据映射到高维空间,解决非线性可分问题。

2. 代码实现

import numpy as np

class SVM:
    def __init__(self, learning_rate=0.001, lambda_param=0.01, n_iters=1000):
        # 初始化学习率、正则化参数、迭代次数
        self.lr = learning_rate       # 控制参数更新步长
        self.lambda_param = lambda_param  # 正则化强度(越大,对误分类惩罚越强)
        self.n_iters = n_iters        # 训练轮数
        self.w = None                 # 权重向量(法向量)
        self.b = None                 # 偏置项

    def fit(self, X, y):
        n_samples, n_features = X.shape  # 样本数、特征维度

        # 标签编码:将原始标签转换为-1和1
        y_ = np.where(y <= 0, -1, 1)  # 假设原始标签为0/1或其他二元形式

        # 初始化权重和偏置为零
        self.w = np.zeros(n_features)
        self.b = 0

        # 梯度下降迭代优化
        for _ in range(self.n_iters):
            # 计算当前参数的线性输出:w·x + b
            linear_output = np.dot(X, self.w) + self.b

            # 确定不满足合页损失条件的样本(y_i(w·x_i +b) <1)
            mask = (y_ * linear_output) < 1  # 布尔掩码

            # 计算权重梯度:正则化项 + 数据项(仅误分类样本贡献)
            # 正则化项梯度:2 * lambda * w
            # 数据项梯度:-1/n * Σ(y_i x_i)(仅对不满足条件的样本)
            dw = (2 * self.lambda_param * self.w) - (np.dot(X[mask].T, y_[mask]) / n_samples)

            # 计算偏置梯度:-1/n * Σ(y_i)
            db = -np.sum(y_[mask]) / n_samples

            # 更新参数:沿负梯度方向调整
            self.w -= self.lr * dw
            self.b -= self.lr * db

    def predict(self, X):
        # 计算线性输出并取符号作为预测结果(-1或1)
        linear_output = np.dot(X, self.w) + self.b
        return np.sign(linear_output)

3. 代码解释

初始化方法 `__init__`
- `learning_rate`: 控制参数更新的步长,避免震荡或收敛过慢。
- `lambda_param`: 正则化系数,平衡分类误差和模型复杂度。
- `n_iters`: 训练迭代次数,影响模型收敛性。

训练方法 `fit`
1. **数据预处理**:将标签转换为-1和1,便于合页损失计算。
2. **参数初始化**:权重和偏置初始化为零。
3. **梯度下降循环**:
   - **线性输出计算**:计算当前参数下的预测值。
   - **误分类样本筛选**:通过掩码标记不满足间隔条件的样本。
   - **梯度计算**:
     - **权重梯度**:包含正则化项(防止过拟合)和数据项(误分类样本的修正)。
     - **偏置梯度**:仅由误分类样本贡献。


4. 参数更新

沿负梯度方向调整,逐步逼近最优解。

预测方法 `predict`
- 计算新样本的线性组合值,并通过符号函数输出类别(-1或1)。
该实现通过梯度下降直接优化合页损失函数,结合L2正则化控制模型复杂度,适用于线性可分或近似线性可分的数据。通过调整超参数(如学习率、正则化系数),可平衡模型的分类准确率和泛化能力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值