两个排序数组的中位数

题目描述:

给定两个大小为m和n的有序  数组nums1 和  nums2 

请找出这两个有序数组的中位数。要求算法的时间复杂度为O(log(m + n))。

你可以假设  nums1  和  nums2  不同时为空。

示例1:

nums1 = [1, 3]
nums2 = [2]

中位数是 2.0

示例2:

nums1 = [1, 2]
nums2 = [3, 4]

中位数是 (2 + 3)/2 = 2.5
class Solution:
    def findMedianSortedArrays(self, nums1, nums2):
        """
        :type nums1: List[int]
        :type nums2: List[int]
        :rtype: float
        """
        num = []
        while nums1 and nums2:
            if nums1[0] < nums2[0]:
                num.append(nums1[0])
                nums1.__delitem__(0)
            else:
                num.append(nums2[0])
                nums2.__delitem__(0)
        if nums1:
            num = num + nums1
        if nums2:
            num = num + nums2
        length = len(num)
        if length % 2 == 0:
            median = (num[length // 2] + num[length // 2 - 1]) / 2.0
        else:
            median = num[length // 2]

        return median

踩过的坑:

a%b取余

a // b取整

print(a / b)虽然输出的是整数,但/不是取整,数组中的索引不能用/,例如A [4/2]是错误的表示,必须是A [4 // 2]

代码存在的问题:

nums1和nums2数组中的元素使用完后就移除了

假设有两个有序数组 nums1 和 nums2,长度分别为 m 和 n。要找到这两个数组中位数,时间复杂度要为 O(log(m+n))。 一种思路是利用归并排序的思想,将两个有序数组合并成一个有序数组,然后找到中位数。 具体步骤如下: 1. 初始化两个指针 i 和 j,分别指向 nums1 和 nums2 的起始位置。 2. 判断两个指针所指元素的大小关系,将较小的元素加入到一个新的数组中,并将指针向后移动一位。 3. 重复步骤 2,直到任意一个指针越界。 4. 判断剩余数组的长度,将剩余的元素加入到新的数组中。 5. 找到新数组中位数,如果新数组长度为偶数,则取中间两个数的平均值,如果长度为奇数,则取中间的数。 代码实现如下: ``` double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) { int m = nums1.size(), n = nums2.size(); int total = m + n; vector<int> nums(total); int i = 0, j = 0, k = 0; while (i < m && j < n) { if (nums1[i] < nums2[j]) { nums[k++] = nums1[i++]; } else { nums[k++] = nums2[j++]; } } while (i < m) { nums[k++] = nums1[i++]; } while (j < n) { nums[k++] = nums2[j++]; } if (total % 2 == 0) { return (nums[total / 2 - 1] + nums[total / 2]) / 2.0; } else { return nums[total / 2]; } } ``` 时间复杂度为 O(m+n),不符合题目要。可以使用二分查找的方法将时间复杂度优化到 O(log(m+n))。 具体思路如下: 1. 假设两个有序数组的长度分别为 m 和 n,将 nums1 分为两部分,前一部分包含 i 个元素,后一部分包含 m-i 个元素;将 nums2 分为两部分,前一部分包含 j 个元素,后一部分包含 n-j 个元素。 2. 如果中位数两个数组的左半部分,那么 i 和 j 都需要向右移动;如果在右半部分,i 和 j 都需要向左移动;如果 i 和 j 恰好满足条件,则找到了中位数。 3. 不断重复步骤 2,直到找到中位数。 代码实现如下: ``` double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) { int m = nums1.size(), n = nums2.size(); if (m > n) { swap(nums1, nums2); swap(m, n); } int left = 0, right = m, halfLen = (m + n + 1) / 2; while (left <= right) { int i = (left + right) / 2; int j = halfLen - i; if (i < m && nums2[j-1] > nums1[i]) { left = i + 1; } else if (i > 0 && nums1[i-1] > nums2[j]) { right = i - 1; } else { int maxLeft = 0; if (i == 0) { maxLeft = nums2[j-1]; } else if (j == 0) { maxLeft = nums1[i-1]; } else { maxLeft = max(nums1[i-1], nums2[j-1]); } if ((m + n) % 2 == 1) { return maxLeft; } int minRight = 0; if (i == m) { minRight = nums2[j]; } else if (j == n) { minRight = nums1[i]; } else { minRight = min(nums1[i], nums2[j]); } return (maxLeft + minRight) / 2.0; } } return 0.0; } ``` 时间复杂度为 O(log(min(m,n)))。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值