麻辣餐厅题解
题面
题目描述
这里有n个餐馆,编号从1-n。
第i家餐厅有一个辣度值wi,一个更高的辣度值显然代表更辣,而低辣度值会更温和。
这n家餐厅(也就是n个点)通过m条双向边连成一个图,边的长度为1。现在有q个人要去吃饭,给出他们所在的位置(对应点的编号)和最大能承受的辣度值。
请输出每个人到能接受范围的餐厅的最短距离。
输入
第一行包括三个整数,分别代表n,m,q。接下来输入n个正整数wi代表每个餐馆对应的辣度值。
接下来输入m行,每一行输入两个数u,v代表u和v之间有一条双向边。最后输入q行,每一行两个数1≤qi≤n,1≤ai≤100分别代表位置和能接受的最大辣度。
对于10%的数据:1≤ n,m,q≤100
对于30%的数据:1≤ n,m,q≤1000
对于50%的数据,1≤n,m,q≤10000
对于全部数据,1≤n,m≤100000 , 1≤q≤500000
看完题目,不难发现所有的边权相等,所以很容易想到bfs
但是,看一下数据点,(bfs是O(n) 算法)我们发现,算法复杂度是O(nq)
而nq远远最大为5e10,显然不行
我们再观察一下题目,发现辣度永远在0~100
我们就可以从每个辣度的餐厅开始搜索一次,最后统计答案,这样,复杂度降到了100n
我们就可以成功不超时的完成啦
#include<iostream>
#include<vector>
#include<queue>
#include<bits/stdc++.h>
using namespace std;
const int MAXN=1e5+10;
int n,m,q;
int w[MAXN];
int ans[MAXN][110];
bool vis[MAXN];
vector<int>edge[MAXN];
void bfs(int x){
memset(vis,0,sizeof(vis));
queue<int>q;
for(int i=1;i<=n;i++){
if(w[i]==x){
q.push(i);
vis[i] = true;
for(int j = x;j<=100;j++){
ans[i][j]=0;
}
}
}
while(!q.empty()){
int dx=q.front();
q.pop();
for(int i=0;i<edge[dx].size();i++){
int v=edge[dx][i];
if(vis[v]==0){
ans[v][x]=ans[dx][x]+1;
vis[v]=1;
q.push(v);
}
}
}
}
int main(){
for(int i=1;i<101;i++){
for(int j=1;j<MAXN;j++){
ans[j][i]=0x3f3f3f3f;
}
}
cin>>n>>m>>q;
for(int i=1;i<=n;i++){
cin>>w[i];
}
for(int i=1;i<=m;i++){
int u,v;
cin>>u>>v;
edge[u].push_back(v);
edge[v].push_back(u);
}
for(int i=1;i<=100;i++){
bfs(i);
}
for(int i=1;i<=q;i++){
int p,l;
cin>>p>>l;
int minl=0x3f3f3f3f;
for(int j=1;j<=l;j++){
minl=min(minl,ans[p][j]);
// cout<<ans[p][j]<<endl;
// cout<<minl<<" ";
}
if(minl==0x3f3f3f3f)cout<<-1<<"\n";
else cout<<minl<<"\n";
}
return 0;
}