怪盗基德的滑翔翼

怪盗基德是一个充满传奇色彩的怪盗,专门以珠宝为目标的超级盗窃犯。

而他最为突出的地方,就是他每次都能逃脱中村警部的重重围堵,而这也很大程度上是多亏了他随身携带的便于操作的滑翔翼。

有一天,怪盗基德像往常一样偷走了一颗珍贵的钻石,不料却被柯南小朋友识破了伪装,而他的滑翔翼的动力装置也被柯南踢出的足球破坏了。

不得已,怪盗基德只能操作受损的滑翔翼逃脱。

假设城市中一共有 N N N幢建筑排成一条线,每幢建筑的高度各不相同。

初始时,怪盗基德可以在任何一幢建筑的顶端。

他可以选择一个方向逃跑,但是不能中途改变方向(因为中森警部会在后面追击)。

因为滑翔翼动力装置受损,他只能往下滑行(即:只能从较高的建筑滑翔到较低的建筑)。

他希望尽可能多地经过不同建筑的顶部,这样可以减缓下降时的冲击力,减少受伤的可能性。

请问,他最多可以经过多少幢不同建筑的顶部(包含初始时的建筑)?

输入格式

输入数据第一行是一个整数 K K K,代表有 K K K组测试数据。

每组测试数据包含两行:第一行是一个整数 N N N ,代表有 N N N幢建筑。第二行包含 N N N个不同的整数,每一个对应一幢建筑的高度 h h h,按照建筑的排列顺序给出。

输出格式

对于每一组测试数据,输出一行,包含一个整数,代表怪盗基德最多可以经过的建筑数量。

数据范围

1 ≤ K ≤ 100 , 1 ≤ N ≤ 100 , 0 < h < 10000 1\leq K\leq 100,\\ 1\leq N\leq100,\\ 0<h<10000 1K100,1N100,0<h<10000

时间复杂度

O ( N 2 ) O(N^2) O(N2)

思路

​ 根据题意,基德只能从高处飞往低处,而且他可以向左飞,也可以向右飞,因此我们可以把其向右飞看作是求 最长下降子序列,把其向左飞看作是求最长上升子序列

​ 我们不妨设 f ( x ) f(x) f(x)为结尾为 x x x时的最长下降子序列, g ( x ) g(x) g(x)为开始为 x x x时的最长上升子序列。假设 i , j ( i < j ) i , j ( i < j ) i,j(i<j)分别是两栋楼的编号, h ( i ) , h ( j ) h(i),h(j) h(i),h(j)分别是两栋楼的高度。

​ 当 h ( i ) > h ( j ) h(i)>h(j) h(i)>h(j)时,代表基德可以从 i i i号楼向 j j j号楼飞(向右),即 f ( j ) = m a x ( f ( j ) , f ( i ) + 1 ) f(j)=max(f(j),f(i)+1) f(j)=max(f(j),f(i)+1)更新以第 j j j号楼结尾的最长下降子序列。
图1

​ 当 h ( i ) < h ( j ) h(i)<h(j) h(i)<h(j)时,代表基德可以从 j j j号楼向 i i i号楼飞(向左),即 g ( j ) = m a x ( g ( j ) , g ( i ) + 1 ) g(j)=max(g(j),g(i)+1) g(j)=max(g(j),g(i)+1)更新以第 j j j号楼开始的最长下降子序列。
在这里插入图片描述

​ 由此,需要循环枚举所有 i , j i,j i,j的位置,且 j > i j>i j>i,因此需要 O ( n 2 ) O(n^2) O(n2)的时间复杂度。

代码
#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
const int maxn=105;
int a[maxn],f[maxn],g[maxn];
//f(i)代表以i为结尾的最长下降子序列
//g(i)代表以i为起点的最长上升子序列
int main(){
    int k;cin>>k;
    while(k--){
        int n;cin>>n;
        memset(f,0,sizeof f);
        memset(g,0,sizeof g);
        for(int i=1;i<=n;i++) cin>>a[i];
        for(int i=1;i<=n;i++){
            for(int j=i+1;j<=n;j++){
                if(a[j]<a[i]) f[j]=max(f[j],f[i]+1);
                if(a[j]>a[i]) g[j]=max(g[j],g[i]+1);
            }
        }
        int res=0;
        for(int i=1;i<=n;i++) res=max(res,max(g[i],f[i]));
        cout<<res+1<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Rockict_z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值