怪盗基德是一个充满传奇色彩的怪盗,专门以珠宝为目标的超级盗窃犯。
而他最为突出的地方,就是他每次都能逃脱中村警部的重重围堵,而这也很大程度上是多亏了他随身携带的便于操作的滑翔翼。
有一天,怪盗基德像往常一样偷走了一颗珍贵的钻石,不料却被柯南小朋友识破了伪装,而他的滑翔翼的动力装置也被柯南踢出的足球破坏了。
不得已,怪盗基德只能操作受损的滑翔翼逃脱。
假设城市中一共有 N N N幢建筑排成一条线,每幢建筑的高度各不相同。
初始时,怪盗基德可以在任何一幢建筑的顶端。
他可以选择一个方向逃跑,但是不能中途改变方向(因为中森警部会在后面追击)。
因为滑翔翼动力装置受损,他只能往下滑行(即:只能从较高的建筑滑翔到较低的建筑)。
他希望尽可能多地经过不同建筑的顶部,这样可以减缓下降时的冲击力,减少受伤的可能性。
请问,他最多可以经过多少幢不同建筑的顶部(包含初始时的建筑)?
输入格式
输入数据第一行是一个整数 K K K,代表有 K K K组测试数据。
每组测试数据包含两行:第一行是一个整数 N N N ,代表有 N N N幢建筑。第二行包含 N N N个不同的整数,每一个对应一幢建筑的高度 h h h,按照建筑的排列顺序给出。
输出格式
对于每一组测试数据,输出一行,包含一个整数,代表怪盗基德最多可以经过的建筑数量。
数据范围
1 ≤ K ≤ 100 , 1 ≤ N ≤ 100 , 0 < h < 10000 1\leq K\leq 100,\\ 1\leq N\leq100,\\ 0<h<10000 1≤K≤100,1≤N≤100,0<h<10000
时间复杂度
O ( N 2 ) O(N^2) O(N2)
思路
根据题意,基德只能从高处飞往低处,而且他可以向左飞,也可以向右飞,因此我们可以把其向右飞看作是求 最长下降子序列,把其向左飞看作是求最长上升子序列。
我们不妨设 f ( x ) f(x) f(x)为结尾为 x x x时的最长下降子序列, g ( x ) g(x) g(x)为开始为 x x x时的最长上升子序列。假设 i , j ( i < j ) i , j ( i < j ) i,j(i<j)分别是两栋楼的编号, h ( i ) , h ( j ) h(i),h(j) h(i),h(j)分别是两栋楼的高度。
当
h
(
i
)
>
h
(
j
)
h(i)>h(j)
h(i)>h(j)时,代表基德可以从
i
i
i号楼向
j
j
j号楼飞(向右),即
f
(
j
)
=
m
a
x
(
f
(
j
)
,
f
(
i
)
+
1
)
f(j)=max(f(j),f(i)+1)
f(j)=max(f(j),f(i)+1)更新以第
j
j
j号楼结尾的最长下降子序列。
当
h
(
i
)
<
h
(
j
)
h(i)<h(j)
h(i)<h(j)时,代表基德可以从
j
j
j号楼向
i
i
i号楼飞(向左),即
g
(
j
)
=
m
a
x
(
g
(
j
)
,
g
(
i
)
+
1
)
g(j)=max(g(j),g(i)+1)
g(j)=max(g(j),g(i)+1)更新以第
j
j
j号楼开始的最长下降子序列。
由此,需要循环枚举所有 i , j i,j i,j的位置,且 j > i j>i j>i,因此需要 O ( n 2 ) O(n^2) O(n2)的时间复杂度。
代码
#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
const int maxn=105;
int a[maxn],f[maxn],g[maxn];
//f(i)代表以i为结尾的最长下降子序列
//g(i)代表以i为起点的最长上升子序列
int main(){
int k;cin>>k;
while(k--){
int n;cin>>n;
memset(f,0,sizeof f);
memset(g,0,sizeof g);
for(int i=1;i<=n;i++) cin>>a[i];
for(int i=1;i<=n;i++){
for(int j=i+1;j<=n;j++){
if(a[j]<a[i]) f[j]=max(f[j],f[i]+1);
if(a[j]>a[i]) g[j]=max(g[j],g[i]+1);
}
}
int res=0;
for(int i=1;i<=n;i++) res=max(res,max(g[i],f[i]));
cout<<res+1<<endl;
}
return 0;
}