平衡二叉树-ACM

11 篇文章 3 订阅

 

平衡二叉树

 

平衡二叉树,是一种二叉排序树,其中每个结点的左子树和右子树的高度差至多等于1。它是一种高度平衡的二叉排序树。高度平衡?意思是说,要么它是一棵空树,要么它的左子树和右子树都是平衡二叉树,且左子树和右子树的深度之差的绝对值不超过1。

    将二叉树上结点的左子树深度减去右子树深度的值称为平衡因子BF,那么平衡二叉树上的所有结点的平衡因子只可能是-1、0和1。只要二叉树上有一个结点的平衡因子的绝对值大于1,则该二叉树就是不平衡的。 

    平衡二叉树的前提是它是一棵二叉排序树。 

    距离插入结点最近的,且平衡因子的绝对值大于1的结点为根的子树,称为最小不平衡子树。如下图所示,当插入结点37时,距离它最近的平衡因子的绝对值超过1的结点是58。

 

 

1、平衡二叉树实现原理 

    平衡二叉树构建的基本思想就是在构建二叉排序树的过程中,每当插入一个结点时,先检查是否因插入而破坏了树的平衡性,若是,则找出最小不平衡子树。在保持二叉排序树特性的前提下,调整最小不平衡子树中各结点之间的链接关系,进行相应的旋转,使之成为新的平衡子树。 下面讲解一个平衡二叉树构建过程的例子。现在又a[10] = {3, 2, 1, 4, 5, 6, 7, 10, 9, 8}需要构建二叉排序树。在没有学习平衡二叉树之前,根据二叉排序树的特性,通常会将它构建成如下左图。虽然完全符合二叉排序树的定义,但是对这样高度达到8的二叉树来说,查找是非常不利的。因此,更加期望构建出如下右图的样子,高度为4的二叉排序树,这样才可以提供高效的查找效率。

    现在来看看如何将一个数组构成出如上右图的树结构。 对于数组a的前两位3和2,很正常地构建,到了第个数“1”时,发现此时根结点“3”的平衡因子变成了2,此时整棵树都成了最小不平衡子树,需要进行调整,如下图图1(结点左上角数字为平衡因子BF值)。因为BF为正,因此将整个树进行右旋(顺时针),此时结点2成了根结点,3成了2的右孩子,这样三个结点的BF值均为0,非常的平衡,如下图图2所示。

    然后再增加结点4,平衡因子没有改变,如上图图3。增加结点5时,结点3的BF值为-2,说明要旋转了。由于BF是负值,对这棵最小平衡子树进行左旋(逆时针旋转),如下图图4,此时整个树又达到了平衡。

    继续增加结点6时,发现根结点2的BF值变成了-2,如下图图6所示。所以对根结点进行了左旋,注意此时本来结点3是结点3的左孩子,由于旋转后需要满足二叉排序树特性,因此它成了结点2的右孩子,如图7所示。

    增加结点7,同样的左旋转,使得整棵树达到平衡,如下图8和9所示。

    

    当增加结点10时,结构无变化,如图10所示。再增加结点9,此时结点7的BF变成了-2,理论上只需要旋转最小不平衡树7、9、10即可,但是,如果左旋转后,结点9变成了10的右孩子,这是不符合二叉排序树的特性的,此时不能简单的左旋。如图11所示。

    仔细观察图11,发现根本原因在于结点7的BF是-2,而结点10的BF是1,也就是说,它们两个一正一负,符号并不统一,而前面的几次旋转,无论左还是右旋,最小不平衡子树的根结点与它的子结点符号都是相同的。这就是不能直接旋转的关键。 不统一,不统一就把它们先转到符号统一再说,于是先对结点9和结点10进行右旋,使得结点10成了9的右子树,结点9的BF为-1,此时就与结点7的BF值符号统一了,如图12所示。

     

    这样再以结点7为最小不平衡子树进行左旋,得到如下图13。接着,插入8,情况与刚才类似,结点6的BF是-2,而它的右孩子9的BF是1,如图14,因此首先以9为根结点,进行右旋,得到图15,此时结点6和结点7的符号都是负,再以6为根结点左旋,最终得到最后的平衡二叉树,如图16所示。

  

    通过这个例子,可以发现,当最小不平衡树根结点的平衡因子BF是大于1时,就右旋,小于-1时就左旋,如上例中的结点1、5、6、7的插入等。插入结点后,最小不平衡子树的BF与它的子树的BF符号相反时,就需要对结点先进行一次旋转以使得符号相同后,再反向旋转一次才能够完成平衡操作,如上例中结点9、8的插入时。

    下面两个图讲解了插入时所要做的旋转操作的例子。《来自:http://www.cnblogs.com/guyan/archive/2012/09/03/2668399.html》

 2、平衡二叉树算法的实现 

     首先是需要改进二叉排序树的结点结构,增加一个bf,用来存储平衡因子。

typedef struct BitNode

{

      int data;

      int bf;

      struct BitNode *lchild, *rchild;

}BitNode, *BiTree;


     然后对于右旋(顺时针)操作,代码如下:

void R_rotate(BiTree *t)

{

         BiTree s;

         s = (*t)->lchild;                    //s指向t的左子树根结点

         (*t)->lchild = s->rchild;          //s的右子树挂接为t的左子树

         s->rchild = (*t);

         *p = s;                                //t指向新的根结点

}

此函数代码的意思是说,当传入一个二叉排序树t,将它的左孩子结点定义为s,将s的右子树变成t的左子树,再将t改为s的右子树,最后将s替换为t的根结点。这样就完成了一次右旋操作。如下图示,图中三角形代表子树,N代表新增的结点。

    上面的例子中新增加了结点N,就是右旋操作。 

    左旋代码如下所示。

 

1

2

3

4

5

6

7

8

void L_rotate(BiTree *t)

{

         BiTree s;

         s = (*t)->rchild;                    //s指向t的右子树根结点

         (*t)->rchild = s->lchild;          //s的左子树挂接为t的右子树

         s->lchild = (*t);

         *p = s;                                //t指向新的根结点

}

     下面看左旋转平衡(使左边平衡)的处理代码。

#define LH +1 /*  左高 */

#define EH 0  /*  等高 */

#define RH -1 /*  右高 */



/*  对以指针T所指结点为根的二叉树作左平衡旋转处理 */

/*  本算法结束时,指针T指向新的根结点 */

void LeftBalance(BiTree *T)

{

    BiTree L,Lr;

    L = (*T)->lchild;                                      /*  L指向T的左子树根结点 */

    switch(L->bf)

    {

        /* 检查T的左子树的平衡度,并作相应平衡处理 */

         case LH:                   /* 新结点插入在T的左孩子的左子树上,要作单右旋处理 */

            (*T)->bf=L->bf=EH;

            R_Rotate(T);

            break;

         case RH:                   /* 新结点插入在T的左孩子的右子树上,要作双旋处理 */

            Lr=L->rchild;                    /* Lr指向T的左孩子的右子树根 */

            switch(Lr->bf)

            {   /* 修改T及其左孩子的平衡因子 */

                case LH: (*T)->bf=RH;

                         L->bf=EH;

                         break;

                case EH: (*T)->bf=L->bf=EH;

                         break;

                case RH: (*T)->bf=EH;

                         L->bf=LH;

                         break;

            }

            Lr->bf=EH;

            L_Rotate(&(*T)->lchild);         /* 对T的左子树作左旋平衡处理 */

            R_Rotate(T);             /* 对T作右旋平衡处理 */

    }

}


    首先,定义三个常数变量,分别代码1、0、-1。   

    (1)函数被调用,传入一个需调整平衡型的子树T。由于LeftBalance函数被调用时,其实是已经确认当前子树是不平衡的状态,且左子树的高度大于右子树的高度。换句话说,此时T的根结点应该是平衡因子BF的值大于1的数。

    (2)将T的左孩子赋值给L。

    (3)然后是分支判断。

    (4)当L的平衡因子为LH,即为1时,表明它与根结点的BF值符号相同,因此,将它们的BF值都改为0,并进行右旋(顺时针)操作,操作方式如图所示。

    (5)当L的平衡因子为RH时,即为-1时,表明它与根结点的BF值符号相反,此时需要做双旋操作。针对L的右孩子的BF作判断,修改结点T和L的BF值。将当前的Lr的BF改为0。

    (6)对根结点的左子树进行左旋,如下图第二图所示。

    (7)对根结点进行右旋,如下图第三图所示,完成平衡操作。

 

    右平衡(使右边平衡)旋转处理的函数代码如下。

/*  对以指针T所指结点为根的二叉树作右平衡旋转处理, */

/*  本算法结束时,指针T指向新的根结点 */

void RightBalance(BiTree *T)

{

    BiTree R,Rl;

    R=(*T)->rchild; /*  R指向T的右子树根结点 */

    switch(R->bf)

    { /*  检查T的右子树的平衡度,并作相应平衡处理 */

     case RH: /*  新结点插入在T的右孩子的右子树上,要作单左旋处理 */

              (*T)->bf=R->bf=EH;

              L_Rotate(T);

              break;

     case LH: /*  新结点插入在T的右孩子的左子树上,要作双旋处理 */

              Rl=R->lchild; /*  Rl指向T的右孩子的左子树根 */

              switch(Rl->bf)

              { /*  修改T及其右孩子的平衡因子 */

                case RH: (*T)->bf=LH;

                         R->bf=EH;

                         break;

                case EH: (*T)->bf=R->bf=EH;

                         break;

                case LH: (*T)->bf=EH;

                         R->bf=RH;

                         break;

              }

              Rl->bf=EH;

              R_Rotate(&(*T)->rchild); /*  对T的右子树作右旋平衡处理 */

              L_Rotate(T); /*  对T作左旋平衡处理 */

    }

}


     插入数据操作如下所示。

/*  若在平衡的二叉排序树T中不存在和e有相同关键字的结点,则插入一个 */

/*  数据元素为e的新结点,并返回1,否则返回0。若因插入而使二叉排序树 */

/*  失去平衡,则作平衡旋转处理,布尔变量taller反映T长高与否。 */

Status InsertAVL(BiTree *T,int e,Status *taller)

{ 

    if(!*T)

    {

        /*  插入新结点,树“长高”,置taller为TRUE */

        *T=(BiTree)malloc(sizeof(BitNode));

        (*T)->data=e; (*T)->lchild=(*T)->rchild=NULL; (*T)->bf=EH;

        *taller=TRUE;

    }

    else

    {

        if (e==(*T)->data)

        {

            /*  树中已存在和e有相同关键字的结点则不再插入 */

            *taller=FALSE; return FALSE;

        }

        if (e<(*T)->data)

        {

            /*  应继续在T的左子树中进行搜索 */

            if(!InsertAVL(&(*T)->lchild,e,taller)) /*  未插入 */

                return FALSE;

            if(*taller)             /*   已插入到T的左子树中且左子树“长高” */

                switch((*T)->bf) /*  检查T的平衡度 */

                {

                    case LH:        /*  原本左子树比右子树高,需要作左平衡处理 */

                        LeftBalance(T);

                        *taller=FALSE; break;

                    case EH:        /*  原本左、右子树等高,现因左子树增高而使树增高 */

                        (*T)->bf=LH;

                        *taller=TRUE; break;

                    case RH:        /*  原本右子树比左子树高,现左、右子树等高 */ 

                        (*T)->bf=EH;

                        *taller=FALSE; break;

                }

        }

        else

        { /*  应继续在T的右子树中进行搜索 */

            if(!InsertAVL(&(*T)->rchild,e,taller)) /*  未插入 */

                return FALSE;

            if(*taller)          /*  已插入到T的右子树且右子树“长高” */

                switch((*T)->bf) /*  检查T的平衡度 */

                {

                    case LH:     /*  原本左子树比右子树高,现左、右子树等高 */

                        (*T)->bf=EH;

                        *taller=FALSE;  break;

                    case EH:     /*  原本左、右子树等高,现因右子树增高而使树增高  */

                        (*T)->bf=RH;

                        *taller=TRUE; break;

                    case RH:     /*  原本右子树比左子树高,需要作右平衡处理 */

                        RightBalance(T);

                        *taller=FALSE; break;

                }

        }

    }

    return TRUE;

}


    (1)程序开始执行时,如果T为空时,则申请内存新增一个结点。     说明:

    (2)如果表示当存在相同结点,则不需要插入。

    (3)当新结点e小于T的根结点时,则在T的左子树查找。

    (4)递归调用本函数,直到找到则返回FALSE,否则说明插入结点成功,执行下面语句。

    (5)当taller为TRUE时,说明插入结点,此时需要判断T的平衡因子,如果是1,说明左子树高于右子树,需要调用LeftBalance函数进行左平衡旋转处理。如果为0或-1,则说明新插入的结点没有让整棵二叉排序树失去平衡性,只需修改相关BF值即可。

    (6)说明结点e大于T的根结点的值,在T的右子树查找。与上面类似。

 

    删除结点的代码如下所示。

 

3、C语言实现

 

#include <stdio.h>   

#include <stdlib.h>  



#define OK 1

#define ERROR 0

#define TRUE 1

#define FALSE 0

#define MAXSIZE 100                     /* 存储空间初始分配量 */



typedef int Status;                     /* Status是函数的类型,其值是函数结果状态代码,如OK等 */





/* 二叉树的二叉链表结点结构定义 */

typedef  struct BitNode                 /* 结点结构 */

{

    int data;                           /* 结点数据 */

    int bf;                             /*  结点的平衡因子 */

    struct BitNode *lchild, *rchild;    /* 左右孩子指针 */

} BitNode, *BiTree;





/* 对以p为根的二叉排序树作右旋处理 */

/* 处理之后p指向新的树根结点,即旋转处理之前的左子树的根结点 */

//右旋-顺时针旋转(如LL型就得对根结点做该旋转)

void R_Rotate(BiTree *P)

{

    BiTree L;

    L=(*P)->lchild;                      /*  L指向P的左子树根结点 */

    (*P)->lchild=L->rchild;               /*  L的右子树挂接为P的左子树 */

    L->rchild=(*P);

    *P=L;                               /*  P指向新的根结点 */

}



/* 对以P为根的二叉排序树作左旋处理, */

/* 处理之后P指向新的树根结点,即旋转处理之前的右子树的根结点0  */

//左旋-逆时针旋转(如RR型就得对根结点做该旋转)

void L_Rotate(BiTree *P)

{

    BiTree R;

    R = (*P)->rchild;                    /* R指向P的右子树根结点 */

    (*P)->rchild = R->lchild;         /* R的左子树挂接为P的右子树 */

    R->lchild = (*P);

    *P = R;                             /* P指向新的根结点 */

}



#define LH +1                           /*  左高 */

#define EH 0                            /*  等高 */

#define RH -1                           /*  右高 */



/*  对以指针T所指结点为根的二叉树作左平衡旋转处理 */

/*  本算法结束时,指针T指向新的根结点 */

void LeftBalance(BiTree *T)

{

    BiTree L,Lr;

    L = (*T)->lchild;                    /*  L指向T的左子树根结点 */

    switch(L->bf)

    {

        /* 检查T的左子树的平衡度,并作相应平衡处理 */

        case LH:                        /* 新结点插入在T的左孩子的左子树上,要作单右旋处理 */

            (*T)->bf=L->bf=EH;

            R_Rotate(T);

            break;

        case RH:                        /* 新结点插入在T的左孩子的右子树上,要作双旋处理 */ //

            Lr=L->rchild;                /* Lr指向T的左孩子的右子树根 */

            switch(Lr->bf)

            {  

                /* 修改T及其左孩子的平衡因子 */

                case LH:

                    (*T)->bf=RH;

                    L->bf=EH;

                    break;

                case EH:

                    (*T)->bf=L->bf=EH;

                    break;

                case RH:

                    (*T)->bf=EH;

                    L->bf=LH;

                    break;

            }

            Lr->bf=EH;

            L_Rotate(&(*T)->lchild); /* 对T的左子树作左旋平衡处理 */

            R_Rotate(T);                /* 对T作右旋平衡处理 */

    }

}



/*  对以指针T所指结点为根的二叉树作右平衡旋转处理, */

/*  本算法结束时,指针T指向新的根结点 */

void RightBalance(BiTree *T)

{

    BiTree R,Rl;

    R=(*T)->rchild;                      /*  R指向T的右子树根结点 */

    switch(R->bf)

    {

        /*  检查T的右子树的平衡度,并作相应平衡处理 */

        case RH:                        /*  新结点插入在T的右孩子的右子树上,要作单左旋处理 */

            (*T)->bf=R->bf=EH;

            L_Rotate(T);

            break;

        case LH:                        /*  新结点插入在T的右孩子的左子树上,要作双旋处理 */ //最小不平衡树的根结点为负,其右孩子为正

            Rl=R->lchild;                /*  Rl指向T的右孩子的左子树根 */

            switch(Rl->bf)

            {

                /*  修改T及其右孩子的平衡因子 */

                case RH:

                    (*T)->bf=LH;

                    R->bf=EH;

                    break;

                case EH:

                    (*T)->bf=R->bf=EH;

                    break;

                case LH:

                    (*T)->bf=EH;

                    R->bf=RH;

                    break;

            }

            Rl->bf=EH;

            R_Rotate(&(*T)->rchild); /*  对T的右子树作右旋平衡处理 */

            L_Rotate(T);                /*  对T作左旋平衡处理 */

    }

}



/*  若在平衡的二叉排序树T中不存在和e有相同关键字的结点,则插入一个 */

/*  数据元素为e的新结点,并返回1,否则返回0。若因插入而使二叉排序树 */

/*  失去平衡,则作平衡旋转处理,布尔变量taller反映T长高与否。 */

Status InsertAVL(BiTree *T,int e,Status *taller)

{ 

    if(!*T)

    {

        /*  插入新结点,树“长高”,置taller为TRUE */

        *T=(BiTree)malloc(sizeof(BitNode));

        (*T)->data=e;

        (*T)->lchild=(*T)->rchild=NULL;

        (*T)->bf=EH;

        *taller=TRUE;

    }

    else

    {

        if (e==(*T)->data)

        {

            /*  树中已存在和e有相同关键字的结点则不再插入 */

            *taller=FALSE;

            return FALSE;

        }

        if (e<(*T)->data)

        {

            /*  应继续在T的左子树中进行搜索 */

            if(!InsertAVL(&(*T)->lchild, e, taller)) /*  未插入 */

                return FALSE;

            if(*taller)                             /*   已插入到T的左子树中且左子树“长高” */

                switch((*T)->bf)                 /*  检查T的平衡度 */

                {

                    case LH:                        /*  原本左子树比右子树高,需要作左平衡处理 */

                        LeftBalance(T);

                        *taller=FALSE;

                        break;

                    case EH:                        /*  原本左、右子树等高,现因左子树增高而使树增高 */

                        (*T)->bf=LH;

                        *taller=TRUE;

                        break;

                    case RH:                        /*  原本右子树比左子树高,现左、右子树等高 */ 

                        (*T)->bf=EH;

                        *taller=FALSE;

                        break;

                }

        }

        else

        {

            /*  应继续在T的右子树中进行搜索 */

            if(!InsertAVL(&(*T)->rchild,e, taller)) /*  未插入 */

            {

                return FALSE;

            }

            if(*taller)                             /*  已插入到T的右子树且右子树“长高” */

            {

                switch((*T)->bf)                 /*  检查T的平衡度 */

                {

                    case LH:                        /*  原本左子树比右子树高,现左、右子树等高 */

                        (*T)->bf=EH;

                        *taller=FALSE; 

                        break;

                    case EH:                        /*  原本左、右子树等高,现因右子树增高而使树增高  */

                        (*T)->bf=RH;

                        *taller=TRUE;

                        break;

                    case RH:                        /*  原本右子树比左子树高,需要作右平衡处理 */

                        RightBalance(T);

                        *taller=FALSE;

                        break;

                }

            }

        }

    }

    return TRUE;

}





/*

若在平衡的二叉排序树t中存在和e有相同关键字的结点,则删除之

并返回TRUE,否则返回FALSE。若因删除而使二叉排序树

失去平衡,则作平衡旋转处理,布尔变量shorter反映t变矮与否

*/

int deleteAVL(BiTree *t, int key, int *shorter)

{

    if(*t == NULL)                                      //不存在该元素

    {

        return FALSE;                                   //删除失败

    }

    else if(key == (*t)->data)                           //找到元素结点

    {

        BitNode *q = NULL;

        if((*t)->lchild == NULL)                     //左子树为空

        {

            q = (*t);

            (*t) = (*t)->rchild;

            free(q);

            *shorter = TRUE;

        }

        else if((*t)->rchild == NULL)                    //右子树为空

        {

            q = (*t);

            (*t) = (*t)->lchild;

            free(q);

            *shorter = TRUE;

        }

        else                                            //左右子树都存在,

        {

            q = (*t)->lchild;

            while(q->rchild)

            {

                q = q->rchild;

            }

            (*t)->data = q->data;

            deleteAVL(&(*t)->lchild, q->data, shorter);   //在左子树中递归删除前驱结点

        }

    }

    else if(key < (*t)->data)                         //左子树中继续查找

    {

        if(!deleteAVL(&(*t)->lchild, key, shorter))

        {

            return FALSE;

        }

        if(*shorter)

        {

            switch((*t)->bf)

            {

            case LH:

                (*t)->bf = EH;

                *shorter = TRUE;

                break;

            case EH:

                (*t)->bf = RH;

                *shorter = FALSE;

                break;

            case RH:

                RightBalance(&(*t));        //右平衡处理

                if((*t)->rchild->bf == EH)    //注意这里,画图思考一下

                    *shorter = FALSE;

                else

                    *shorter = TRUE;

                break;

            }

        }

    }

    else                                //右子树中继续查找

    {

        if(!deleteAVL(&(*t)->rchild, key, shorter))

        {

            return FALSE;

        }

        if(shorter)

        {

            switch((*t)->bf)

            {

            case LH:

                LeftBalance(&(*t));         //左平衡处理

                if((*t)->lchild->bf == EH)  //注意这里,画图思考一下

                    *shorter = FALSE;

                else

                    *shorter = TRUE;

                break;

            case EH:

                (*t)->bf = LH;

                *shorter = FALSE;

                break;

            case RH:

                (*t)->bf = EH;

                *shorter = TRUE;

                break;

            }

        }

    }

    return TRUE;

}



void InOrderTraverse(BiTree t)

{

    if(t)

    {

        InOrderTraverse(t->lchild);

        printf("%d  ", t->data);

        InOrderTraverse(t->rchild);

    }

}





int main(void)

{   

    int i;

    int a[10]={3,2,1,4,5,6,7,10,9,8};

    BiTree T=NULL;

    Status taller;

    for(i=0;i<10;i++)

    {

        InsertAVL(&T,a[i],&taller);

    }

    printf("中序遍历二叉平衡树:\n");

    InOrderTraverse(T);

    printf("\n");

    printf("删除结点元素5后中序遍历:\n");

    int shorter;

    deleteAVL(&T, 5, &shorter);

    InOrderTraverse(T);

    printf("\n");

    return 0;

}

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值