- 博客(235)
- 资源 (3)
- 收藏
- 关注
原创 如何下载和在本地使用Bert预训练模型
bert 预训练模型的下载有许多方式,比如从github官网上下载(官网下载的是tensorflow版本的),还可以从源码中找到下载链接,然后手动下载,最后还可以从huggingface中下载。关于huggingface的介绍可以看这个:Huggingface简介及BERT代码浅析从huggingface下载预训练模型的地址:https://huggingface.co/models点进去是这样的:如果你想使用 bert-base-uncased 那么第一个就是,如果想使用别的预训练模型,还可以在
2020-12-03 15:53:33 44123 35
原创 [E050] Can‘t find model ‘en_core_web_sm‘. 错误
完整的错误日志如下:[E050] Can’t find model ‘en_core_web_sm’. It doesn’t seem to be a shortcut link, a Python package or a valid path to a data directory.这个错误的原因是电脑上找不到en_core_web_sm这个包。导致这个错误的原因有两个:没有安装这个包安装了,但是还是提示找不到针对第一个原因,有以下几种解决方案:第一种,按照官方文档(这个方法,国内
2020-11-27 20:33:19 16338 9
原创 torch.nn.MaxPool2d详解
注意:这里展示的是本篇博文写时的版本最新的实现,但是后续会代码可能会迭代更新,建议对照官方文档进行学习。先来看源码:# 这个类是是许多池化类的基类,这里有必要了解一下class _MaxPoolNd(Module): __constants__ = ['kernel_size', 'stride', 'padding', 'dilation', 'return_indices', 'ceil_mode'] return_indices: boo
2020-11-22 20:18:38 87460 24
原创 torch.nn.Conv2d详解
首先看一下这个类的定义:class Conv2d(_ConvNd): # 初始化函数,这里主要了解有哪些参数传进来就可以了 def __init__( self, in_channels: int, out_channels: int, kernel_size: _size_2_t, stride: _size_2_t = 1, padding: _size_2_t = 0, d
2020-11-22 11:30:42 27080 8
原创 如何理解卷积神经网络中的通道(channel)
在卷积神经网络中我们通常需要输入 in_channels 和 out_channels ,即输入通道数和输出通道数,它们代表什么意思呢?本文将给出一个形象的理解。对于通道的理解可以参考下面的这篇文章:【CNN】理解卷积神经网络中的通道 channel这里我稍微总结一下核心观点:对于最初输入图片样本的通道数 in_channels 取决于图片的类型,如果是彩色的,即RGB类型,这时候通道数固定为3,如果是灰色的,通道数为1。卷积完成之后,输出的通道数 out_channels 取决于过滤器的数量。
2020-11-22 09:16:15 66305 38
原创 卷积核(kernel)和过滤器(filter)的区别
之前就遇到过类似的问题,但是没有在中文社区中找到一种通俗易懂的答案,于是决定写下这篇文章,希望能给有类似困惑的人一个比较清晰的解释。卷积核就是由长和宽来指定的,是一个二维的概念。而过滤器是是由长、宽和深度指定的,是一个三维的概念。过滤器可以看做是卷积核的集合。过滤器比卷积核高一个维度——深度。下面结合一个多通道的例子马上就能理解了:图 1图1是对一个3通道的图片做卷积操作,卷积核的大小为 3×33 \times 33×3 ,卷积核的数目为3,此时过滤器指的就是这三个卷积核
2020-11-21 19:53:44 28692 17
原创 RNN编码器-解码器
读 Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation论文的主要贡献提出了一个新的神经网络模型叫做 RNN编码-解码器 ,该模型包含两个RNN,分别位于编码器和解码器中,编码器中的RNN负责将变长的输入序列映射到一个固定长度的向量中,解码器中的RNN则负责将向量映射到一个变长的输出序列中。定性的来讲,这个模型可以学习语言短语的有意义的的语义和句法表示。提出了一个新的L
2020-10-08 14:09:33 6009 1
原创 TensorFlow中的logits什么意思
在看论文的时候遇到几次logits这个单词,本次想用翻译软件查查,结果好几个软件都没有这个词的意思。无奈只好谷歌一下这个词的含义,结果在“What is the meaning of the word logits in TensorFlow? ” 这篇回答中找到了答案。这也是本文章的题目。也找了许多中文答案,但感觉都没有说出其本质。回答:logit 在统计学上是一个数学函数,但是在神经网络中却有着不同的含义。说白了,logits 就是一个向量,下一步将被投给 softmax 的向量。就是下图这个
2020-10-01 07:54:20 2833
原创 Attention is All You Need 论文架构理解
本文主要对论文“Attention is All You Need”的核心架构进行介绍。下图是Transformer的架构:Attention一个attention函数可以看做是将一个query跟一组key-value对映射到一个输出。query、keys、values和输出都是向量。输出是values的加权和,每一个values对应的权重是由兼容函数(compatibility function)根据query和对应的key计算出来的。图1Scaled Dot-Product Attenti
2020-09-28 18:14:33 724 1
原创 长短时记忆神经网络(LSTM)
下面为翻译文章,会稍有增删:原文:http://colah.github.io/posts/2015-08-Understanding-LSTMs/其他人的翻译:https://www.xiemingzhao.com/posts/eff2088e.html类似的文章:https://www.jianshu.com/p/8219ca28925e循环神经网络人类不会每秒都从头开始思考。 阅读本文时,您会根据对先前单词的理解来理解每个单词。 您不会丢掉一切,重新从头开始思考。 传统的神经网络无法做到这一
2020-09-24 20:27:36 19120 3
原创 全连接神经网络的前向传播和反向传播推导(配图理解)
什么是全连接神经网络?全连接神经网络是指任意两个相邻层之间的神经元全部互相连接。如下图所示:图 1如何计算全连接神经网络的输出?在进行计算前,我们先对一些变量进行说明,如下图所示:图 2首先是整个神经网络的输入,我们用 x1,x2,x3...xnx_1,x_2,x_3...x_nx1,x2,x3...xn 来表示神经网络的输入,在上图中输入是: x1,x2,x3x_1,x_2,x_3x1,x2,x3 。为了方便计算我们还可以用向量表示:X=[x1x2x3]X= \left[
2020-08-23 19:40:29 6530 4
原创 线性回归&梯度下降
什么是线性回归?学习首先从定义开始,下面是百度百科和维基百科对线性回归的定义:百度百科线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。维基百科线性回归(linear regression)是利用称为线性回归方程的最小二乘函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。了解了线性回归的定义,接下来我们再说一下什么是线性、什么是回归?什么是线性?线性:自变量之间只存在线性关系,即自变量只能通过相加、或者相减进行组合1这
2020-07-26 21:37:09 397
原创 CUDA、cuDNN、pytorch安装分析
概念介绍什么是GPU?GPU全称是Graphics Processing Unit,即图形处理器,是一种专门进行绘图运算工作的微处理器。虽然GPU在游戏中以3D渲染而闻名,但是GPU相较于传统的专为通用计算而设计的CPU,GPU是一种特殊类型的处理器,具有数百或数千个内核,经过优化,可并行运行大量计算,对运行深度学习和机器学习算法尤其有用。GPU允许某些计算机比传统CPU上运行相同的计算速度快...
2020-04-04 17:35:39 2086
原创 python包安装教程
因为之前学习深度学习,需要安装很多框架,但是经常会有一些包安装失败,这里大部分原因是请求的包服务器在境外,访问速度慢,导致下载慢或因超时而失败,于是这里总结了多种python包的安装方式。安装方式从是否需要网络来看有:联网安装和离线安装两种;联网安装就是指:利用 pip install package conda install package 这样的命令进行安装离线安装就是指:先将安装包下...
2020-04-02 23:36:58 946
原创 Pytorch.nn.Linear 解析(数学角度)
pytorch.nn.Linear 是一个类,下面是它的一些初始化参数in_features : 输入样本的张量大小out_features : 输出样本的张量大小bias : 偏置它主要是对输入数据做一个线性变换。y=xAT+by=xA^T+by=xAT+b这里A是权重矩阵,b是偏置。他们都是根据 in_features 生成测试代码:m = torch.nn.Linea...
2020-04-01 23:06:18 11193 8
原创 CentOS安装MySQL(补充一些其他人没写的细节)
先综述一下整个步骤,然后详细论述其细节;卸载Linux上已有的MySQL(如果存在的话)查看自己操作系统版本(linux6, linux7, 还是Linux8)走Mysql给的官方文档1.卸载Linux上已有的MySQL这一步已经有好多人总结过了, 这里我就不赘述了, 下面两个个链接,可以参考一下:CentOS卸载Mysqllinux完全卸载mariadb这里的mariadb可...
2020-02-01 21:54:31 235
原创 python列表、元组、字典、集合总结
python列表:列表、元组、字典分别对应list, tuple, dict1.list的简介列表是python内置的一种数据类型,是一种有序的集合,可对其进行增删改查。列表中的元素不一定是同类型的。列表是可变序列2.list的初始化list = [] # 空列表初始化list = ['a', 'b', 'c'] # 有值初始化list = [1, 2, 3, 'a', 'b'...
2020-01-31 20:02:16 2809
原创 python 文件读写操作总结
python 文件读写操作总结1.打开文件open函数是python的内置函数,返回一个 file 对象 定义如下:open(file, mode='r', buffering=-1, encoding=None, errors=None, newline=None, closefd=True, opener=None)f = open('data.txt') // 最简单的调用参数...
2020-01-12 23:07:11 3953
原创 微信小程序登录后端开发流程(附go后端实现代码)
参考:微信官方文档 * 小程序登录流程微信官方文档 * 小程序本文参考以上文档, 加上自己理解整合写出.登录流程前端调用wx.login() 获取 临时登录凭证code ,并回传到开发者服务器。后端调用 auth.code2Session 接口,换取 用户唯一标识OpenID 和 会话密钥 session_key。开发者服务器可以根据用户标识来生成自定义登录态,用于后续业务逻辑中前...
2019-11-02 18:04:52 9400 2
原创 用golang做繁简体转换
之前在做一个项目的时候, 遇到了需要用golang做繁简体转换的需求.经过一番调查, 发现并没有类似用纯golang做的开源项目. 而自己也不想从头写一个(毕竟时间有限, 能力也有限), 于是选择利用python强大的库来做繁简体转换, 然后golang调用即可.这里面难点有两个:如何用python进行繁简体转换利用golang调用python封装好的繁简体转换函数一 如何用Pyth...
2019-10-26 16:15:53 2374
原创 pkg-config: exec: "pkg-config": executable file not found in $PATH
这是在安装go-python的时候遇到的问题go get github.com/sbinet/go-python解决方案:安装pkg-configsudo apt-get install pkg-config之后运行:go get github.com/sbinet/go-python解决!...
2019-10-26 13:30:57 13283
原创 ubuntu下安装python-dev遇到的问题
安装教程(简书)按照上面的教程, 配置完镜像源之后,安装aptitudesudo apt-get install aptitude然后用aptitude安装python-devsudo aptitude install python-dev 遇到下面问题:medlen@IdeaPad:/etc/apt$ sudo apt-get install aptitude Readi...
2019-10-25 23:20:03 3885 3
原创 设置ubuntu镜像源为中科大镜像源
解释一下为什么需要换镜像源, 不知道你有没有遇到过类似的情况, 使用apt-get下载软件包的时候, 总会有一些包下载不下来。 这通常是因为依赖包在国外服务器, 你访问不到, 所以你需要转移到国内的镜像网站下载。镜像源也有很多, 阿里的, 中科大的, 清华的, 163的等等。据说中科大的比较稳定(道听途说 -_-), 所以这里以中科大为例。配置方式都是一样的首先做一个备份,这是个好习惯,修改...
2019-10-25 22:10:10 16046 7
原创 Linux下Golang环境搭建教程
下载安装包官网:https://golang.google.cn/dl/如果不能访问,去找国内镜像也可以通过curl命令下载curl https://dl.google.com/go/go1.12.7.linux-amd64.tar.gz > go1.12.7.linux-amd64.tar.gz使用命令解压tar -C /usr/local -xzf go1.12....
2019-07-26 14:02:45 622
原创 前段学习心得-jQuery
1、在form标签中加入button按钮或者使用input(type=submit),点击提交后会刷新整个页面。2、如果用jQuery中的选择器选择复数元素,怎么取出其中特定元素?用选择器中的:eq(index)3、jQuery中常用函数及其用法(1)hide()隐藏元素 该方法不会保留隐藏元素的空间位置(2)show()显示隐藏元素(3)css(name,value) cs...
2019-07-25 20:45:20 245
原创 jQuery给一组图片添加点击事件
在写代码的过程中遇到了,因为好久没写过前端的内容了,这里记录一下$(document).ready(function() { $("#main-content img").each(function() { $(this).click(function() { var $cbx = $(this).next().children("input");...
2019-07-25 20:40:30 2347
转载 jQuery操作复选框checkbox技巧总结 ---- 设置选中、取消选中、获取被选中的值、判断是否选中等
转自:https://blog.csdn.net/chenchunlin526/article/details/77448168jQuery操作复选框checkbox技巧总结 — 设置选中、取消选中、获取被选中的值、判断是否选中等一、checked属性定义先了解下input标签的checked属性:1、HTML checked 属性◆ 定义和用法checked 属性是一个布尔属性。...
2019-07-25 20:35:08 371
原创 优先队列的Java实现
实现了以下核心方法:pulbic void push (E x);public E poll ();public E peek ();public boolean isEmpty ();public void resize ();详细设计:import java.util.Comparator;public class PriorityQueue<E> { pri...
2019-06-07 23:58:33 1421
原创 删除排序链表中的重复元素
给定一个排序链表,删除所有含有重复数字的节点,只保留原始链表中 没有重复出现 的数字。示例 1:输入: 1->2->3->3->4->4->5输出: 1->2->5示例 2:输入: 1->1->1->2->3输出: 2->3思路:如何确定头结点?建立一个哨位节点,在链表头部,最后返回该节点的下一个节点即...
2019-05-30 21:22:26 281
原创 Description Resource Path Location Type Target runtime jboss-as-7.1.1.Final Runtime is not defined.
错误显示如下:在当前项目的.setting文件中找到org.eclipse.wst.common.project.facet.core.xml,内容如下:<?xml version="1.0" encoding="UTF-8"?><faceted-project> <runtime name="jboss-as-7.1.1.Final Runtime"/&...
2019-05-08 20:02:50 771
原创 jsp页面可以在浏览器中运行但无法在eclipse内部显示
之前在Eclipse中运行一个最简单的jsp页面时,一直显示页面无法正常显示,但是将路径拷贝到浏览器中就可以运行了。这是因为eclipse使用的是操作系统内置的浏览器,所以需要修改内置浏览器配置Internet选项-》连接 -》局域网设置 -》自动检测 勾选上就OK了。...
2019-05-08 19:50:46 22108 2
转载 LeetCode--最长上升子序列
给定一个无序的整数数组,找到其中最长上升子序列的长度。示例:输入: [10,9,2,5,3,7,101,18]输出: 4解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。说明:可能会有多种最长上升子序列的组合,你只需要输出对应的长度即可。你算法的时间复杂度应该为 O(n2) 。进阶: 你能将算法的时间复杂度降低到 O(n log n) 吗?转自:https://...
2019-04-24 19:22:41 381
原创 LeetCode----下一个排列
实现获取下一个排列的函数,算法需要将给定数字序列重新排列成字典序中下一个更大的排列。如果不存在下一个更大的排列,则将数字重新排列成最小的排列(即升序排列)。必须原地修改,只允许使用额外常数空间。以下是一些例子,输入位于左侧列,其相应输出位于右侧列。1,2,3 → 1,3,23,2,1 → 1,2,31,1,5 → 1,5,1对于这道题,重要的是找到规律,实现算法比较简单;既然是找规...
2019-04-19 21:44:11 260
原创 CSDN Markdown 如何输入上标和标
1、输入上标符号效果n^2^n2n<sup>2</sup>n22、输入下标符号效果n~2~n2n<sub>2</sub>n2
2019-04-17 19:21:41 1649
原创 关于排序算法的一些总结
这个只是一个简单的总结,便于对比和查看类型是否稳定最好平均最坏具体实现直接插入排序稳定O(n)O(n2)O(n2)查看Shell排序不稳定O(n1.3)O(nlog2n)O(2)查看直接选择排序不稳定O(n)O(n2)O(n2)查看堆排序不稳定O(nlog2n)O(nlog2n)O(nlog2n)查看冒泡...
2019-04-17 18:54:36 171
原创 IDEA+JBoss配置EJB入门项目(附完整源码)
首先是环境:我用的是IDEA+jboss-as-7.1.1.Final;一、JBoss环境搭建这个自行百度;二、用IDEA创建EJB项目1、新建一个空的Java项目File --> New --> Project;然后一路点next,配置项目名。这里我的项目名为 EJBDemo ;结果如下:2、创建服务端Module选中项目名 --> 右键 --> N...
2019-04-14 16:15:57 4627 2
原创 表示数数值的字符串
题目描述请实现一个函数用来判断字符串是否表示数值(包括整数和小数)。例如,字符串"+100",“5e2”,"-123",“3.1416"和”-1E-16"都表示数值。 但是"12e",“1a3.14”,“1.2.3”,"±5"和"12e+4.3"都不是。对于这样一道题,核心是分析出什么情况下是数字什么情况下不是数字。这里我们针对所有可能进行分析:1、首先如果是+或者-;那么要求该正负号必须...
2019-04-03 18:03:23 178
原创 字符流中第一个不重复的字符
题目描述请实现一个函数用来找出字符流中第一个只出现一次的字符。例如,当从字符流中只读出前两个字符"go"时,第一个只出现一次的字符是"g"。当从该字符流中读出前六个字符“google"时,第一个只出现一次的字符是"l"。输出描述:如果当前字符流没有存在出现一次的字符,返回#字符。解析:这个问题很简单,首先要知道字符ASCII字符一共只有128个,因此我们只需要两个128大小的辅助数组即...
2019-04-03 17:35:08 142
原创 归并排序
时间复杂度O(nlogn)稳定import java.util.*;public class Main{ public static void mergeSort(int arr[]){ int ans[] = new int[arr.length]; //这里创建一个数组,以免重复申请,耗费资源 divide(arr,0,arr.length-1,...
2019-03-30 23:17:53 142
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人