每日算法(5):求解买股票问题(动态规划法)

“逢低吸纳”是炒股的一条成功秘诀,如果你想成为一个成功的投资者,就要遵守这条秘诀。“逢低吸纳,越低越买”,这句话的意思是每次你购买股票时的股价一定要比你上次购买时的股价低。按照这个规则购买股票的次数越多越好,看看你最多能按这个规则买几次。

输入格式
第1行为正整数N(1≤N≤5000)表示能买股票的天数;第2行以下是N个正整数,第i个正整数表示第i天的股价。
12
68 69 54 64 68 64 70 67 78 62 98 87

输出格式
输出一行表示能够买进股票的最多天数。
4


思路:“你购买股票时的股价一定要比你上次购买时的股价低。按照这个规则购买股票的次数越多越好”,这样可以简单看做是求取最长下降序列,不一定是连续的子序列。

设置数组dp,dp[i]表示以a[i]结尾的最长下降序列的长度
状态转移方程是dp[i]=max(dp[j]+1,dp[i])
两层for循环,遍历序列的每一个元素a[i],遍历a[i]之前的每一个元素,如果当前元素a[i]小于之前的元素a[j],进行状态转移,如果dp[i]大于res,则更新res。
最后输出res即可。

#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 5050;
int n;
int a[maxn];
int dp[maxn]; //dp[i]表示以a[i]结尾的最长下降序列的长度

int main() {
    cin >> n;
    for (int i = 0; i < n; i++) {
        cin >> a[i];
        dp[i] = 1;
    } //状态转移方程
    int res = 0;
    for (int i = 1; i < n; i++) {
        for (int j = 0; j < i; j++) {
            if (a[i] < a[j]) { //如果a[i]小于它前一个数,则进行dp更新
                dp[i] = max(dp[j] + 1, dp[i]);
            }
        }
        res = max(res, dp[i]);
    }
    //输出
    cout << res;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值