coursera
Echo0713
机器学习
展开
-
Lecture3: Evaluation
对于模型而言,accuracy可以在一定程度上反映模型的好坏,但有时候远远不够,这里介绍一些其他的评估矩阵。原创 2017-06-11 22:41:48 · 435 阅读 · 0 评论 -
Lecture1: Introduction
看完了cs229但没有做过相关的作业,所以想找门应用的课看一看,顺便也学一学Python,所以开始学习Coursera中的Applied machine learning. 这门课不会详细介绍原理细节方面,主要偏向如何用一些库实现机器学习。 Introduction中介绍了一些机器学习的基本概念,如supervised learning, unsupervised learning等等,这里就原创 2017-06-02 09:41:07 · 260 阅读 · 0 评论 -
Lecture 2: Supervised machine learning
这周主要讲监督学习首先介绍了下监督学习的概念以及过拟合和欠拟合,这些就不再赘述了。K邻近法对数据的结构没有做假设,虽然预测较为正确,但是通常不稳定。 线性拟合对数据的结构做了些假设,结果较为稳定,但可能不太精确。 如果有大量的特征,尤其是很多特征值为0的情况下,最好不要用K邻近法。SVM支持向量机,SVM可以用于classification和regression。 具体可以参考《统计机器学习》原创 2017-06-10 21:39:24 · 454 阅读 · 0 评论 -
Lecture4: Supervised Machine Learning - Part2
Naive Bayes Classifier Naive Bayes假设给定一类,模型中的特征都是独立于其他特征存在的,这样,运算速度会非常快,但是范化能力会比较差。 实际上,这个假设通常是不成立的,但并不影响使用。 通常适用于高维数据 随机森林 以随机的方式建立一个森林,里面有多颗较为简单的决策树,将这些决策树结合起来,会产生非常好的效果。 Neural network 这一部分就不多说了原创 2017-07-15 09:07:07 · 393 阅读 · 0 评论