算法拾遗二十六之暴力递归到动态规划六

题目一【数组累加和最小的】

在这里插入图片描述
找较小的集合最接近两个集合总和的一半:

	public static int right(int[] arr) {
		if (arr == null || arr.length < 2) {
			return 0;
		}
		//统计所有数的累加和
		int sum = 0;
		for (int num : arr) {
			sum += num;
		}
		return process(arr, 0, sum / 2);
	}

	// arr[i...]从i位置出发及其后面的数可以自由选择,
	// 请返回累加和尽量接近rest,但不能超过rest的情况下,最接近的累加和是多少?
	public static int process(int[] arr, int i, int rest) {
		if (i == arr.length) {
			return 0;
		} else { // 还有数,arr[i]这个数
			// 可能性1,不使用arr[i],直接index+1,rest不变
			int p1 = process(arr, i + 1, rest);
			// 可能性2,要使用arr[i]
			int p2 = 0;
			if (arr[i] <= rest) {
				p2 = arr[i] + process(arr, i + 1, rest - arr[i]);
			}
			return Math.max(p1, p2);
		}
	}

改dp,有两个可变参数:
i变化范围为0-N,rest变化范围,从0-sum/2,不会超过此范围。
先看basecase:
在这里插入图片描述
分析普遍位置依赖关系:
i位置依赖于i+1位置
在这里插入图片描述

   public static int dp1(int[] arr) {
        if (arr == null || arr.length < 2) {
            return 0;
        }
        int sum = 0;
        for (int num : arr) {
            sum += num;
        }
        sum /= 2;
        int N = arr.length;
        int[][] dp = new int[N + 1][sum + 1];
        /*
         int p1 = process(arr, i + 1, rest);
            // 可能性2,要使用arr[i]
            int p2 = 0;
            if (arr[i] <= rest) {
                p2 = arr[i] + process(arr, i + 1, rest - arr[i]);
            }
         */
        for (int i = N - 1; i >= 0; i--) {

            for (int rest = 0; rest <= sum; rest++) {

                int p1 = dp[i + 1][rest];
                int p2 = 0;
                if (arr[i] <= rest) {
                    p2 = arr[i] + dp[i + 1][rest - arr[i]];
                }
                dp[i][rest] = Math.max(p1, p2);
            }
        }
        return dp[0][sum];
    }

    public static int[] randomArray(int len, int value) {
        int[] arr = new int[len];
        for (int i = 0; i < arr.length; i++) {
            arr[i] = (int) (Math.random() * value);
        }
        return arr;
    }

    public static void printArray(int[] arr) {
        for (int num : arr) {
            System.out.print(num + " ");
        }
        System.out.println();
    }

    public static void main(String[] args) {
        int maxLen = 20;
        int maxValue = 50;
        int testTime = 10000;
        System.out.println("测试开始");
        for (int i = 0; i < testTime; i++) {
            int len = (int) (Math.random() * maxLen);
            int[] arr = randomArray(len, maxValue);
            int ans1 = right(arr);
            int ans2 = dp1(arr);
            if (ans1 != ans2) {
                printArray(arr);
                System.out.println(ans1);
                System.out.println(ans2);
                System.out.println("Oops!");
                break;
            }
        }
        System.out.println("测试结束");
    }

题目二

在这里插入图片描述

 public static int right1(int[] arr) {
        if (arr == null || arr.length < 2) {
            return 0;
        }
        int sum = 0;
        for (int num : arr) {
            sum += num;
        }

        if ((arr.length & 1) == 0) {
            return process1(arr, 0, arr.length / 2, sum / 2);
        } else {
            return Math.max(process1(arr, 0, arr.length / 2, sum / 2), process1(arr, 0, arr.length / 2 + 1, sum / 2));
        }
    }


    public static int process1(int[] arr, int i, int picks, int rest) {
        if (i == arr.length) {
            //没有数的情况,没法调返回一个-1表示这个过程不能使用
            return picks == 0 ? 0 : -1;
        } else {
            //还有数挑
            //第一种选择不挑当前数
            int p1 = process1(arr, i + 1, picks, rest);
            int p2 = -1;
            int next = -1;
            if (arr[i] <= rest) {
                next = process1(arr, i + 1, picks - 1, rest - arr[i]);
            }
            if (next != -1) {
                //如果后续是有效的才有可能性2
                p2 = arr[i] + next;
            }

            return Math.max(p1,p2);
        }
    }

改dp:三个可变参数可用一个三维dp解决

在这里插入图片描述

  public static int dp4(int[] arr) {
        if (arr == null || arr.length < 2) {
            return 0;
        }
        int sum = 0;
        for (int num : arr) {
            sum += num;
        }
        sum /= 2;
        int N = arr.length;
        int M = (N + 1) / 2;
        int[][][] dp = new int[N + 1][M + 1][sum + 1];

        for (int i = 0; i <= N; i++) {
            for (int j = 0; j <= M; j++) {
                for (int k = 0; k <= sum; k++) {
                    dp[i][j][k] = -1;
                }
            }
        }

    /*    if (i == arr.length) {
            //没有数的情况,没法调返回一个-1表示这个过程不能使用
            return picks == 0 ? 0 : -1;
        }*/
        for (int rest = 0; rest <= sum; rest++) {
            dp[N][0][rest] = 0;
        }

        for (int i = N - 1; i >= 0; i--) {
            for (int picks = 0; picks <= M; picks++) {
                for (int rest = 0; rest <= sum; rest++) {
              /*      //还有数挑
                    //第一种选择不挑当前数
                    int p1 = process1(arr, i + 1, picks, rest);
                    int p2 = -1;
                    int next = -1;
                    if (arr[i] <= rest) {
                        next = process1(arr, i + 1, picks - 1, rest - arr[i]);
                    }
                    if (next != -1) {
                        //如果后续是有效的才有可能性2
                        p2 = arr[i] + next;
                    }

                    return Math.max(p1, p2);*/
                    int p1 = dp[i + 1][picks][rest];
                    int p2 = -1;
                    int next = -1;
                    if (picks - 1 >= 0 && arr[i] <= rest) {
                        next = dp[i + 1][picks - 1][rest - arr[i]];
                    }
                    if (next != -1) {
                        p2 = arr[i] + next;
                    }

                    dp[i][picks][rest] = Math.max(p1,p2);
                }
            }
        }

        if ((arr.length & 1) == 0) {
            return dp[0][arr.length / 2][sum];
        } else {
            return Math.max(dp[0][arr.length / 2][sum], dp[0][(arr.length / 2) + 1][sum]);
        }
    }
什么暴力递归可以继续优化

在这里插入图片描述
在这里插入图片描述

暴力递归和动态规划的关系

在这里插入图片描述

面试题和动态规划的关系

在这里插入图片描述

如何找到某个问题的动态规划方式

在这里插入图片描述

面试中设计暴力递归的原则

在这里插入图片描述

知道了暴力递归的原则 然后设计

在这里插入图片描述

常见的四种尝试模型

在这里插入图片描述

如何分析有没有重复解

在这里插入图片描述

暴力递归到动态规划的套路

在这里插入图片描述

动态规划的进一步优化

在这里插入图片描述

N皇后问题

在这里插入图片描述
在这里插入图片描述
如上算是一种解,考虑皇后的时候一行一行的填入皇后,每一行填入一个皇后,这样就不用检查两个皇后是否共行了。
之前的某个皇后在(x,y),然后当前位置在(甲,乙)位置
如果y==乙或者甲减去x的绝对值等于y-乙的绝对值【共斜线】
复杂度为O(n的n次方)
每一行都有n种决策

public static int num1(int n) {
		if (n < 1) {
			return 0;
		}
		int[] record = new int[n];
		return process1(0, record, n);
	}

	// 当前来到i行,一共是0~N-1行
	// 在i行上放皇后,所有列都尝试
	// 必须要保证跟之前所有的皇后不打架
	// int[] record record[x] = y 之前的第x行的皇后,放在了y列上,一维数组的列号表示n皇后的行号
	// 返回:不关心i以上发生了什么,i.... 后续有多少合法的方法数
	public static int process1(int i, int[] record, int n) {
		//i来到n位置未发生打架
		if (i == n) {
			return 1;
		}
		int res = 0;
		// i行的皇后,放哪一列呢?j列,
		for (int j = 0; j < n; j++) {
			if (isValid(record, i, j)) {
				record[i] = j;
				res += process1(i + 1, record, n);
			}
		}
		return res;
	}

	/**
	 * 判断是否发生打架
	 *
	 * @param record
	 * @param i
	 * @param j
	 * @return
	 */
	public static boolean isValid(int[] record, int i, int j) {
		// 0..i-1,检查0->i-1行的皇后是否发生打架
		for (int k = 0; k < i; k++) {
			if (j == record[k] || Math.abs(record[k] - j) == Math.abs(i - k)) {
				return false;
			}
		}
		return true;
	}

位运算优化常数时间:
在这里插入图片描述
能选的位置是列或上左下与右下还是0的位置。
同理再定义一个第0行的x位置是皇后放置的位置,或出来三个方框的位置是第一行不能选的。
在这里插入图片描述
每次放一个皇后都要更新列限制,左下限制以及右下限制。
假设某个时刻是这样的:
在这里插入图片描述
最后是1的不能放皇后是0的可以,然后整体取反变成其他的全1中间的三个1变成三个0
limit是0…011111110…0,然后与一下得到limit=1100011,其中1是能放n皇后的位置

// 请不要超过32皇后问题
	public static int num2(int n) {
		if (n < 1 || n > 32) {
			return 0;
		}
		// 如果你是13皇后问题,limit 最右13个1,其他都是0,通过整数的位来标记皇后
		int limit = n == 32 ? -1 : (1 << n) - 1;
		return process2(limit, 0, 0, 0);
	}

	// 7皇后问题
	// limit : 0....0 1 1 1 1 1 1 1
	// 之前皇后的列影响:colLim
	// 之前皇后的左下对角线影响:leftDiaLim
	// 之前皇后的右下对角线影响:rightDiaLim
	public static int process2(int limit, int colLim, int leftDiaLim, int rightDiaLim) {
		//列影响等于了limit
		if (colLim == limit) {
			return 1;
		}
		// pos中所有是1的位置,是你可以去尝试皇后的位置
		int pos = limit & (~(colLim | leftDiaLim | rightDiaLim));
		int mostRightOne = 0;
		int res = 0;
		while (pos != 0) {
			mostRightOne = pos & (~pos + 1);
			pos = pos - mostRightOne;
			res += process2(limit, colLim | mostRightOne, (leftDiaLim | mostRightOne) << 1,
					(rightDiaLim | mostRightOne) >>> 1);//无符号右移
		}
		return res;
	}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值