TensorFlow 学习大纲

一、基础环境搭建与入门
  1. TensorFlow 简介与安装
    • 背景:TensorFlow 由 Google Brain 团队开发,2015 年开源,是深度学习领域的主流框架之一,支持从研究到生产的全流程开发。
    • 安装方式
      • CPU 版本:适合入门学习,命令简单:
        pip install tensorflow
      • GPU 版本:需安装 CUDA 和 cuDNN(参考 TensorFlow 官网文档),命令:
        pip install tensorflow-gpu
    • 验证安装
      import tensorflow as tf
      print(tf.__version__) # 输出版本号即安装成功
      print(tf.config.list_physical_devices('GPU')) # 查看GPU是否可用
  2. 核心概念解析
    • 张量(Tensor)
      • 多维数组,是 TensorFlow 的基本数据结构。
      • 维度示例
        • 0 维:标量(tf.constant(5)
        • 1 维:向量(tf.constant([1, 2, 3])
        • 2 维:矩阵(tf.constant([[1, 2], [3, 4]])
        • 3 维:图像数据(长、宽、通道数)。
    • 计算图(Graph)
      • 由节点(操作)和边(张量流动)组成,TensorFlow 1.x 的核心机制。
      • TensorFlow 2.x 默认启用“即时执行(Eager Execution)”,无需预先定义图,更接近 Python 原生逻辑。
    • 会话(Session)
      • 执行计算图的工具,TensorFlow 1.x 中需显式创建会话来运行操作。
      • TensorFlow 2.x 中通过动态图机制自动管理。
    • Keras API
      • TensorFlow 的高层封装,提供极简代码实现复杂模型(如几行代码搭建神经网络),支持快速原型开发和底层定制。
二、核心功能与操作
  1. 张量操作
    • 创建张量
      • 常量:tf.constant([1, 2, 3])
      • 变量:tf.Variable([1.0, 2.0])(训练中可更新)
      • 随机张量:tf.random.normal(shape=(2, 3))(正态分布)
    • 张量运算
      • 矩阵乘法:tf.matmul(a, b)
      • 元素级运算:tf.add(a, b)
  2. 数据流图与即时执行
    • 数据流图优势
      • 支持并行计算和分布式计算,节点可独立执行(输入就绪时)。
      • 设备分配:通过 tf.device 指定操作在 CPU 或 GPU 上执行。
    • 即时执行模式
      • TensorFlow 2.x 默认启用,无需预先定义图,代码更直观。
      • 示例:
        a = tf.constant(2)
        b = tf.constant(3)
        print(tf.add(a, b).numpy()) # 直接输出 5
  3. 模型构建与训练
    • Sequential 模型
      • 适用于简单层叠结构,示例:
        model = tf.keras.Sequential([
        tf.keras.layers.Flatten(input_shape=(28, 28)), # 输入层
        tf.keras.layers.Dense(128, activation='relu'), # 隐藏层
        tf.keras.layers.Dense(10, activation='softmax') # 输出层
        ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

古龙飞扬

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值