一、基础环境搭建与入门
- TensorFlow 简介与安装
- 背景:TensorFlow 由 Google Brain 团队开发,2015 年开源,是深度学习领域的主流框架之一,支持从研究到生产的全流程开发。
- 安装方式:
- CPU 版本:适合入门学习,命令简单:
pip install tensorflow - GPU 版本:需安装 CUDA 和 cuDNN(参考 TensorFlow 官网文档),命令:
pip install tensorflow-gpu
- CPU 版本:适合入门学习,命令简单:
- 验证安装:
import tensorflow as tf print(tf.__version__) # 输出版本号即安装成功 print(tf.config.list_physical_devices('GPU')) # 查看GPU是否可用
- 核心概念解析
- 张量(Tensor):
- 多维数组,是 TensorFlow 的基本数据结构。
- 维度示例:
- 0 维:标量(
tf.constant(5)) - 1 维:向量(
tf.constant([1, 2, 3])) - 2 维:矩阵(
tf.constant([[1, 2], [3, 4]])) - 3 维:图像数据(长、宽、通道数)。
- 0 维:标量(
- 计算图(Graph):
- 由节点(操作)和边(张量流动)组成,TensorFlow 1.x 的核心机制。
- TensorFlow 2.x 默认启用“即时执行(Eager Execution)”,无需预先定义图,更接近 Python 原生逻辑。
- 会话(Session):
- 执行计算图的工具,TensorFlow 1.x 中需显式创建会话来运行操作。
- TensorFlow 2.x 中通过动态图机制自动管理。
- Keras API:
- TensorFlow 的高层封装,提供极简代码实现复杂模型(如几行代码搭建神经网络),支持快速原型开发和底层定制。
- 张量(Tensor):
二、核心功能与操作
- 张量操作
- 创建张量:
- 常量:
tf.constant([1, 2, 3]) - 变量:
tf.Variable([1.0, 2.0])(训练中可更新) - 随机张量:
tf.random.normal(shape=(2, 3))(正态分布)
- 常量:
- 张量运算:
- 矩阵乘法:
tf.matmul(a, b) - 元素级运算:
tf.add(a, b)
- 矩阵乘法:
- 创建张量:
- 数据流图与即时执行
- 数据流图优势:
- 支持并行计算和分布式计算,节点可独立执行(输入就绪时)。
- 设备分配:通过
tf.device指定操作在 CPU 或 GPU 上执行。
- 即时执行模式:
- TensorFlow 2.x 默认启用,无需预先定义图,代码更直观。
- 示例:
a = tf.constant(2) b = tf.constant(3) print(tf.add(a, b).numpy()) # 直接输出 5
- 数据流图优势:
- 模型构建与训练
- Sequential 模型:
- 适用于简单层叠结构,示例:
model = tf.keras.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), # 输入层 tf.keras.layers.Dense(128, activation='relu'), # 隐藏层 tf.keras.layers.Dense(10, activation='softmax') # 输出层 ]
- 适用于简单层叠结构,示例:
- Sequential 模型:

最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



