【好专栏】深度学习框架不会用?12大主流深度学习框架快速入门,你值得拥有!...

欢迎来到【好专栏】,本次我们给大家推荐一个专栏,名为《12 大深度学习开源框架快速入门》,这个专栏为介绍了深度学习的 12 大主流框架,附带实践案例,能够让读者快速掌握深度学习框架的使用!

作者 & 编辑 | Leong

导言

现如今开源生态非常完善,深度学习相关的开源框架众多,光是为人熟知的就有 caffe,tensorflow,pytorch/caffe2,keras,mxnet,paddldpaddle,theano,cntk,deeplearning4j,matconvnet 等。

如何选择最适合你的开源框架是一个问题。《12 大深度学习开源框架快速入门》专栏给大家整理了 12 个深度学习开源框架快速入门的教程和代码,供初学者进行挑选。

下面是各大开源框架的一个总览。

深度学习的 12 大主流框架一览

在选择开源框架时,要考虑很多原因,比如开源生态的完善性,比如自己项目的需求,比如自己熟悉的语言。当然,现在已经有很多开源框架之间进行互转的开源工具如 MMDNN 等,也降低了大家迁移框架的学习成本。

那么究竟如何选择适合自己的开源框架呢,看看专栏作者怎么说?

(1) 不管怎么说,tensorflow/pytorch 你都必须会,这是目前开发者最喜欢,开源项目最丰富的两个框架。

(2) 如果你要进行移动端算法的开发,那么 Caffe 是不能不会的。

(3) 如果你非常熟悉 Matlab,matconvnet 你不应该错过。

(4) 如果你追求高效轻量,那么 darknet 和 mxnet 你不能不熟悉。

(5) 如果你很懒,想写最少的代码完成任务,那么用 keras 吧。

(6) 如果你是 java 程序员,那么掌握 deeplearning4j 没错的。

《12 大深度学习开源框架快速入门》专栏

1 Caffe

【caffe 速成】caffe 图像分类从模型自定义到测试

caffe 解读】 caffe 从数学公式到代码实现 1 - 导论

caffe 解读】 caffe 从数学公式到代码实现 2 - 基础函数类

caffe 解读】 caffe 从数学公式到代码实现 3-shape 相关类

【caffe 解读】caffe 从数学公式到代码实现 4 - 认识 caffe 自带的 7 大 loss

【caffe 解读】caffe 从数学公式到代码实现 5-caffe 中的卷积

【CV项目实战】纯新手如何从零开始完成一个工业级的图像分类任务?

【CV项目实战】纯新手如何从零开始完成一个工业级图像分割任务的整个流程?

  https://github.com/BVLC/caffe

2 Tensorflow

【tensorflow 速成】Tensorflow 图像分类从模型自定义到测试

【CV项目实战】纯新手如何从零开始完成一个工业级的图像分类任务?

【百战GAN】新手如何开始你的第一个生成对抗网络(GAN)任务

  https://github.com/tensorflow/tensorflow

3 PyTorch

【pytorch 速成】Pytorch 图像分类从模型自定义到测试

【CV项目实战】纯新手如何从零开始完成一个工业级的图像分类任务?

【CV项目实战】纯新手如何从零开始完成一个工业级图像分割任务的整个流程?

 https://github.com/pytorch/pytorch

4 Mxnet

【mxnet 速成】mxnet 图像分类从模型自定义到测试

  https://github.com/apache/incubator-mxnet

5 Keras

【Keras 速成】Keras 图像分类从模型自定义到测试

  https://github.com/keras-team/keras

6 Paddlepaddle

【paddlepaddle 速成】paddlepaddle 图像分类从模型自定义到测试

  https://github.com/PaddlePaddle/Paddle

7 CNTK

【cntk 速成】cntk 图像分类从模型自定义到测试

  https://github.com/Microsoft/CNTK

8 Matconvnet

【MatConvnet 速成】MatConvnet 图像分类从模型自定义到测试

  https://github.com/vlfeat/matconvnet

9 Deeplearning4j

【DL4J 速成】Deeplearning4j 图像分类从模型自定义到测试

https://github.com/deeplearning4j/deeplearning4j

10 Chainer

【chainer 速成】chainer 图像分类从模型自定义到测试

  https://github.com/chainer/chainer

11 Lasagne/Theano

【Lasagne 速成】Lasagne/Theano 图像分类从模型自定义到测试

  https://github.com/Lasagne/Lasagne

12 Darknet

【darknet 速成】Darknet 图像分类从模型自定义到测试

  https://github.com/pjreddie/darknet

扫码加入有三言选知识星球,共享好资源

转载文章请后台联系

侵权必究

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器视觉CV

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值