欢迎来到【好专栏】,本次我们给大家推荐一个专栏,名为《12 大深度学习开源框架快速入门》,这个专栏为介绍了深度学习的 12 大主流框架,附带实践案例,能够让读者快速掌握深度学习框架的使用!
作者 & 编辑 | Leong
导言
现如今开源生态非常完善,深度学习相关的开源框架众多,光是为人熟知的就有 caffe,tensorflow,pytorch/caffe2,keras,mxnet,paddldpaddle,theano,cntk,deeplearning4j,matconvnet 等。
如何选择最适合你的开源框架是一个问题。《12 大深度学习开源框架快速入门》专栏给大家整理了 12 个深度学习开源框架快速入门的教程和代码,供初学者进行挑选。
下面是各大开源框架的一个总览。
深度学习的 12 大主流框架一览
在选择开源框架时,要考虑很多原因,比如开源生态的完善性,比如自己项目的需求,比如自己熟悉的语言。当然,现在已经有很多开源框架之间进行互转的开源工具如 MMDNN 等,也降低了大家迁移框架的学习成本。
那么究竟如何选择适合自己的开源框架呢,看看专栏作者怎么说?
(1) 不管怎么说,tensorflow/pytorch 你都必须会,这是目前开发者最喜欢,开源项目最丰富的两个框架。
(2) 如果你要进行移动端算法的开发,那么 Caffe 是不能不会的。
(3) 如果你非常熟悉 Matlab,matconvnet 你不应该错过。
(4) 如果你追求高效轻量,那么 darknet 和 mxnet 你不能不熟悉。
(5) 如果你很懒,想写最少的代码完成任务,那么用 keras 吧。
(6) 如果你是 java 程序员,那么掌握 deeplearning4j 没错的。
《12 大深度学习开源框架快速入门》专栏
1 Caffe
【caffe 解读】 caffe 从数学公式到代码实现 1 - 导论
【caffe 解读】 caffe 从数学公式到代码实现 2 - 基础函数类
【caffe 解读】 caffe 从数学公式到代码实现 3-shape 相关类
【caffe 解读】caffe 从数学公式到代码实现 4 - 认识 caffe 自带的 7 大 loss
【caffe 解读】caffe 从数学公式到代码实现 5-caffe 中的卷积
【CV项目实战】纯新手如何从零开始完成一个工业级的图像分类任务?
【CV项目实战】纯新手如何从零开始完成一个工业级图像分割任务的整个流程?
https://github.com/BVLC/caffe
2 Tensorflow
【tensorflow 速成】Tensorflow 图像分类从模型自定义到测试
【CV项目实战】纯新手如何从零开始完成一个工业级的图像分类任务?
【百战GAN】新手如何开始你的第一个生成对抗网络(GAN)任务
https://github.com/tensorflow/tensorflow
3 PyTorch
【pytorch 速成】Pytorch 图像分类从模型自定义到测试
【CV项目实战】纯新手如何从零开始完成一个工业级的图像分类任务?
【CV项目实战】纯新手如何从零开始完成一个工业级图像分割任务的整个流程?
https://github.com/pytorch/pytorch
4 Mxnet
https://github.com/apache/incubator-mxnet
5 Keras
https://github.com/keras-team/keras
6 Paddlepaddle
【paddlepaddle 速成】paddlepaddle 图像分类从模型自定义到测试
https://github.com/PaddlePaddle/Paddle
7 CNTK
https://github.com/Microsoft/CNTK
8 Matconvnet
【MatConvnet 速成】MatConvnet 图像分类从模型自定义到测试
https://github.com/vlfeat/matconvnet
9 Deeplearning4j
【DL4J 速成】Deeplearning4j 图像分类从模型自定义到测试
https://github.com/deeplearning4j/deeplearning4j
10 Chainer
【chainer 速成】chainer 图像分类从模型自定义到测试
https://github.com/chainer/chainer
11 Lasagne/Theano
【Lasagne 速成】Lasagne/Theano 图像分类从模型自定义到测试
https://github.com/Lasagne/Lasagne
12 Darknet
【darknet 速成】Darknet 图像分类从模型自定义到测试
https://github.com/pjreddie/darknet
扫码加入有三言选知识星球,共享好资源
转载文章请后台联系
侵权必究