人人商城人人店人人分销商城V2.8.0解密开源版,收银台+秒杀+区域代理+积分商城+多商户

介绍:

最新版V2.8.0版本,一直在更新的微信分销商城,功能非常强大,满足需要在微信端创建商城的用户,可以选择分销、文章营销、区域代理等模式,非常不错!
新增整点秒杀插件
新增消息群发插件
新增店铺装修秒杀页模板
新增暂停模式:群发过程中可暂停发送并可随后恢复
新增消息群发一客服消息模式:可发送48小时内与公众号有过互动的用户
新增消息群发一混合模式:优先使用客服消息发送,发送失败后使用模板消息发送
重制模板消息模板添加逻辑,操作更简洁:仅需输入模板消息编号即可使用模板消息
消息群发模板新增2个变量:[商城名称]/[粉丝昵称]
新增会员积分上限
新增按分销商等级组发送
收银台输入金额键盘样式优化
新增收银台随机立减最低支付多少金额才能享受随机立减
新增收银台使用会员余额抵扣金额后显示 还需支付金额
新增收银台商品收款支持扫描商品的条码
新增店铺装修手机端自定义返回顶部(可选图标、图片)
新增后台返回顶部按钮
新增后台快捷导航
更新我的优惠券链接问题
新增全网通用户注册、找回密码 支持开启图形验证码
修复群发消息插件无法生成任务问题
修复积分商城因更新错误导致个别页面保存问题
修复店铺装修商品组商品浏览权限问题
收银台输入金额键盘样式优化
修复佣金打款导出实际打款金额计算错误问题
惧色台修复商品收款现金收款商城商品 不产生分销的问题
全新积分商城上线
修复小票打印机打印重复商品问题
运行环境: php5.3/php5.4+认证服务号+Mysql


网盘下载地址:

https://zijiewangpan.com/32t1DfNKiI7


图片:



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 要在Linux上搭建Hive on Spark环境,需要以下步骤: 1. 安装Hadoop和Spark 首先需要安装Hadoop和Spark,可以选择Hadoop 2.8.0和Spark 1.6.3本。安装过程可以参考官方文档。 2. 安装Hive 安装Hive需要下载Hive 2.1.1本,并解压到指定目录。然后需要配置Hive的环境变量,将Hive的bin目录添加到PATH中。 3. 配置Hive on Spark 在Hive的conf目录下,需要创建hive-site.xml文件,并添加以下配置: ``` <property> <name>hive.execution.engine</name> <value>spark</value> </property> <property> <name>spark.master</name> <value>local[*]</value> </property> <property> <name>spark.submit.deployMode</name> <value>client</value> </property> <property> <name>spark.executor.memory</name> <value>1g</value> </property> ``` 其中,hive.execution.engine配置为spark,spark.master配置为local[*],表示使用本地模式运行Spark。spark.submit.deployMode配置为client,表示以客户端模式提交Spark任务。spark.executor.memory配置为1g,表示每个executor的内存为1GB。 4. 启动Spark和Hive 启动Spark和Hive需要分别执行以下命令: ``` $SPARK_HOME/sbin/start-all.sh $HIVE_HOME/bin/hive ``` 其中,$SPARK_HOME和$HIVE_HOME分别为Spark和Hive的安装目录。 5. 测试Hive on Spark 在Hive命令行中,可以执行以下命令测试Hive on Spark: ``` hive> set hive.execution.engine=spark; hive> select count(*) from table_name; ``` 其中,table_name为需要查询的表名。如果查询结果正确,则说明Hive on Spark环境搭建成功。 ### 回答2: Hadoop是一个开源的分布式文件系统和计算框架,在大数据领域中应用广泛,而Hive则是基于Hadoop的数据仓库系统,通过将数据存储在Hadoop中,并使用类SQL的语言查询和分析数据。但是,Hive的执行速度很慢,而Spark是速度很快的内存计算框架,能够比Hadoop更快地处理大数据。因此,用户可以使用Hive on Spark来加速Hive查询。 要在Linux上搭建Hive on Spark环境, 需要按照以下步骤进行操作: 1. 下载并安装Hadoop:在官方网站上下载Hadoop的最新本,然后解压和配置。 2. 下载并安装Spark:在官方网站上下载Spark的最新本,然后解压和配置。 3. 下载并安装Hive:在官方网站上下载Hive的最新本,然后解压和配置。 4. 配置环境变量:在.bashrc或.bash_profile中添加Hadoop和Spark的路径,并运行source命令使其生效。 5. 启动Hadoop集群:运行start-all.sh脚本启动Hadoop集群,可以通过jps命令检查集群是否正常运行。 6. 启动Spark:运行spark-shell来启动Spark,可以通过测试程序检查Spark是否正常运行。 7. 启动Hive:运行hive命令来启动Hive,可以通过测试程序测试Hive是否正常运行。 8. 配置Hive on Spark:在hive-site.xml文件中添加以下变量来配置Hive on Spark: hive.execution.engine=spark hive.spark.client.server.connect.timeout=600 hive.spark.client.connect.timeout=600 9. 验证Hive on Spark:运行一些查询来验证Hive on Spark是否正常运行,并通过Spark网页界面查看运行情况。 总之,搭建Hive on Spark环境需要仔细地完成操作,按照步骤进行操作,将会帮助你更快更有效地处理大数据。 ### 回答3: 首先,在准备搭建 Hive on Spark 环境之前,我们需要确保已经安装了 Java JDK 、Hadoop 和 Spark 环境。在此基础上,按照以下步骤完成 Hive on Spark 的搭建: 1. 下载Hive 在 Apache Hive 的官网上可以下载到需要的本,我们这里选择 hive-2.1.1 本,下载后解压。 2. 配置Hadoop环境变量 在 ~/.bashrc 中添加如下内容: export HADOOP_HOME=/your/path/to/hadoop export PATH=$PATH:$HADOOP_HOME/bin 保存文件,并使用 source ~/.bashrc 命令来使环境变量立即生效。 3. 配置Hive环境变量 在 ~/.bashrc 中添加如下内容: export HIVE_HOME=/your/path/to/hive export PATH=$PATH:$HIVE_HOME/bin 保存文件,并使用 source ~/.bashrc 命令来使环境变量立即生效。 4. 配置Spark环境变量 在 ~/.bashrc 中添加如下内容: export SPARK_HOME=/your/path/to/spark export PATH=$PATH:$SPARK_HOME/bin:$SPARK_HOME/sbin 保存文件,并使用 source ~/.bashrc 命令来使环境变量立即生效。 5. 配置Hive的hive-site.xml文件 将 $HIVE_HOME/conf 目录下的 hive-default.xml.template 文件复制一份并命名为 hive-site.xml,然后根据需要进行修改。在 hive-site.xml 中添加以下内容: ``` <property> <name>spark.master</name> <value>spark://<SPARK_MASTER_HOST>:<SPARK_MASTER_PORT></value> <description>URL of the Spark Master</description> </property> <property> <name>spark.submit.deployMode</name> <value>client</value> <description>Whether to run Spark in client or cluster mode</description> </property> <property> <name>hive.execution.engine</name> <value>spark</value> <description>Execution engine</description> </property> <property> <name>hive.spark.client.connect.timeout</name> <value>300s</value> </property> ``` 注意,其中的 <SPARK_MASTER_HOST> 和 <SPARK_MASTER_PORT> 分别应该替换为实际使用的 Spark Master 的地址和端口。 6. 配置Spark的spark-defaults.conf文件 将 $SPARK_HOME/conf 目录下的 spark-defaults.conf.template 文件复制一份并命名为 spark-defaults.conf,然后根据需要进行修改。在 spark-defaults.conf 中添加以下内容: ``` spark.executor.memory 4g spark.driver.memory 2g spark.sql.shuffle.partitions 200 ``` 根据需要调整默认的内存大小(如果已经分配过多可能会导致OOM),设置适当的partition数(避免执行时的数据倾斜问题)。 7. 启动Hive服务 执行启动Hive的命令: ``` hive --service metastore & hive ``` 需要注意的是,需要先启动 metastore 服务,然后才能启动 Hive 客户端。 8. 准备测试数据 接下来,为了测试 Hive on Spark 的功能,可以使用 Hive 提供的测试数据集来进行测试。 将 https://github.com/facebookarchive/facebook-360-spatial-workstation.git 克隆到本地,进入 samples 文件夹,执行以下命令来生成哈希表: ``` beeline -n hadoop -d org.apache.hive.jdbc.HiveDriver \ -jdbc:hive2://localhost:10000 \ -e "CREATE TABLE h3 (id int, lat double, lon double, geog string) \ ROW FORMAT DELIMITED \ FIELDS TERMINATED BY ',' \ LINES TERMINATED BY '\n' \ STORED AS TEXTFILE;" cd h3/ /data/gdal/gdal-2.2.0/bin/ogr2ogr -f CSV GEOM{FID}H3v11.csv geohash-cells.geojson -lco COMPRESS=DEFLATE beeline -n hadoop -d org.apache.hive.jdbc.HiveDriver \ -jdbc:hive2://localhost:10000 \ -e "LOAD DATA LOCAL INPATH '/h3/GEOMFIDH3v11.csv' INTO TABLE h3;" ``` 在以上命令中,我们使用了 beeline 来连接到 Hive 服务器,并使用 ogr2ogr 工具读取 geojson 文件并转存为 CSV 文件后导入到 Hive 中。 9. 执行Spark SQL查询 接下来可以使用 Spark SQL 来查询 Hive 中的数据。 运行 Spark Shell: ``` $SPARK_HOME/bin/spark-shell --master spark://<SPARK_MASTER_HOST>:<SPARK_MASTER_PORT> \ --jars $HIVE_HOME/lib/hive-exec-<HIVE_VERSION>.jar,$HIVE_HOME/lib/hive-metastore-<HIVE_VERSION>.jar ``` 如果以上命令运行正常,将会进入 Spark Shell 中。 在 Shell 中运行如下代码: ``` import org.apache.spark.sql._ val hiveContext = new org.apache.spark.sql.hive.HiveContext(sc) hiveContext.setConf("hive.metastore.uris","thrift://<IP_ADDRESS>:9083") hiveContext.sql("use default") hiveContext.sql("show databases").foreach(println) hiveContext.sql("select count(*) from h3").foreach(println) ``` 其中,<IP_ADDRESS> 应该替换为实际使用的 Thrift 服务器的 IP 地址。 10. 结束Spark SQL查询 完成测试后,可以使用以下命令退出 Spark Shell: ``` scala> :q ``` 至此,Hive on Spark 环境已经搭建完成。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值