a) 第j步开始前,计数器为i,表示
ni
,若该步没有增加,则仍表示
ni
,若增加了,则表示
ni+1
,表示的数增加了
ni+1−ni
故
E[Xj]=0⋅(1−1ni+1−ni)+(ni+1−ni)⋅1ni+1−ni=1
故n步的期望为n
b)
Var[Xj]=E[X2j]−E2[Xj]=(0⋅99100+1002⋅1100)−1=99
故
Var[X]=99n