博文配套视频课程:24小时实现从零到AI人工智能
多项式回归介绍
直线回归研究的是一个依变量与一个自变量之间的回归问题,但是,在畜禽、水产科学领域的许多实际问题中,影响依变量的自变量往往不止一个,而是多个,比如绵羊的产毛量这一变量同时受到绵羊体重、胸围、体长等多个变量的影响,因此需要进行一个依变量与多个自变量间的回归分析,即多元回归分析。
Numpy实现多项式
import numpy as np
import matplotlib.pyplot as plt
# 方法将随机生成下一个实数,它在 [x, y] 范围内
x = np.random.uniform(-3, 3, size=100)
print(x.shape)
# 数字与矩阵进行加减乘数运算后返回的还是矩阵
y = 0.5 * x ** 2 + x + 2 + np.random.normal(0, 1, size=100)
print(y.shape)
# 采用线性回归方程来预测
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
# 没有转化为二维数组则训练时会抛出异常
X = x.reshape(-1, 1)
# 为了方便没有查分直接训练了(正常应该拆分训练集与测试集)
lr.fit(X, y)
print('权重', lr.coef_,'偏置',lr.intercept_)
y_predict = lr.predict(X)
plt.scatter(x, y)
plt.plot(X, y_predict, color='r')
plt.show()
# 解决方案,新增加一个特征
print((X**2).shape)
# hstack 在水平方向上平铺 vstack 在竖直方向上堆叠
X2 = np.hstack([X**2,X])
# 新的数据集有两个特征
print(X2.shape)
lr.fit(X2,y)
# 基本和预测的系数相同
print('权重', lr.coef_,'偏置',lr.intercept_)
y_predict = lr.predict(X2)
plt.scatter(X, y)
# 这样绘制线条是没有顺序的
# plt.plot(x,y_predict,color='r')
# argsort函数返回的是数组值从小到大的索引值
# sort 对数组进行排序,返回排序后的值
plt.plot(np.sort(x),y_predict[np.argsort(x)],color='r')
plt.show()
一次多项式生成的直线图
二次多项式生成的曲线图
如果想要拟合一个抛物面,而不是拟合一个平面的话,那么就需计算输入变量x二次项的线性组合,则模型更新为下面这个形式