02_大数据生态圈介绍

在这里插入图片描述

大数据生态体系

提起大数据,不得不提由IBM提出的关于大数据的5V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性),而对于大数据领域的从业人员的日常工作也与这5V密切相关。大数据技术在过去的几十年中取得非常迅速的发展,尤以Hadoop和Spark最为突出,已构建起庞大的技术生态体系圈

首先通过一张图来了解一下目前大数据领域常用的一些技术,当然大数据发展至今所涉及技术远不止这些。BigData Stack:
在这里插入图片描述

数据存储层

HDFS

分布式文件存储系统,具有高容错(high fault-tolerant)、高吞吐(high throughput)、高可用(high available)的特性。HDFS非常适合大规模数据集上的应用,提供高吞吐量的数据访问,可部署在廉价的机器上。它放宽了POSIX的要求,这样可以实现流的形式访问(文件系统中的数据。主要为各类分布式计算框架如Spark、MapReduce等提供海量数据存储服务,HBase底层数据存储也依赖于HDFS

HBase

基于Google Bigtable的开源实现,是一个具有高可靠性、高性能、面向列、可伸缩性、典型的key/value分布式存储的nosql数据库系统,主要用于海量结构化和半结构化数据存储。它介于nosql和RDBMS之间,仅能通过行键(row key)和行键的range来检索数据,行数据存储是原子性的,仅支持单行事务(可通过hive支持来实现多表join等复杂操作)。HBase查询数据功能很简单,不支持join等复杂操作,不支持跨行和跨表事务
在这里插入图片描述

数据采集和传输层

Flume

Flume一个分布式、可靠的、高可用的用于数据采集、聚合和传输的系统。常用于日志采集系统中,支持定制各类数据发送方用于收集数据、通过自定义拦截器对数据进行简单的预处理并传输到各种数据接收方如HDFS、HBase、Kafka中。之前由Cloudera开发,后纳入Apache

Kafka

分布式消息系统。生产者(producer)——消费者(consumer)模型。提供了类似于JMS的特性,但设计上完全不同,不遵循JMS规范。如kafka允许多个消费者主动拉取数据,而JMS中只有点对点模式消费者才会主动拉取数据。主要应用在数据缓冲、异步通信、汇集数据、系统接偶等方面
在这里插入图片描述

Sqoop

Sqoop主要通过一组命令进行数据导入导出的工具,底层引擎依赖于MapReduce,主要用于Hadoop(如HDFS、Hive、HBase)和RDBMS(如mysql、oracle)之间的数据导入导出

数据分析层

Spark

Spark是一个快速、通用、可扩展、可容错的、内存迭代式计算的大数据分析引擎。目前生态体系主要包括用于批数据处理的SparkRDD、SparkSQL,用于流数据处理的SparkStreaming、Structured-Streaming,用于机器学习的Spark MLLib,用于图计算的Graphx以及用于统计分析的SparkR,支持Java、Scala、Python、R多种数据语言。
在这里插入图片描述

Flink

分布式的大数据处理引擎,可以对有限数据流和无线数据流进行有状态的计算。Flink在设计之初就是以流为基础发展的,然后再进入批处理领域,相对于spark而言,它是一个真正意义上的实时计算引擎

Hive

Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供HQL语句(类SQL语言)查询功能,存储依赖于HDFS。支持多种计算引擎,如Spark、MapReduce(默认)、Tez;支持多种存储格式,如TextFile、SequenceFile、RCFile、ORC、Parquet(常用);支持多种压缩格式,如gzip、lzo、snappy(常用)、bzip2
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值