CS224W笔记
shshsh0817
好好学习天天向上
展开
-
CS244W: Machine Learning with Graphs (6) ——信息传递和节点分类
Main question:给定一个在某些节点上有标签的网络,我们如何将给网络中的所有其他节点分配标签?个体行为与网络环境是相互关联的,如以下三种关联:相似的节点通常紧密相连或直接连接,利用这些相关性,即节点的特征,节点邻居的特征,节点邻居的标签,来分配标签的三种方法:关系分类算法(Relational classification)迭代分类算法(Iterative classification)置信度传播算法(Belief propagation)马尔科夫假设:...原创 2020-06-18 18:26:49 · 442 阅读 · 0 评论 -
CS244W: Machine Learning with Graphs (5) ——谱聚类
谱聚类分为三个步骤:预处理:构造图的矩阵表示分解:计算矩阵的固有值和固有向量,将每个节点映射到基于一个或多个特征向量的低维表示分组:根据新的表示,将点分配到两个或多个集群我们已经知道一个好的分组是要使组内连接越多越好,同时组间连接越少越好。 一、衡量标准图切割(Graph cuts)图切割是使用被分割的边表示分组的函数:如果我们使用图切割作为衡量标准,最小化图切割:则会出现如下例中的问题:这是因为图切割只考虑了群集外部的连接,而没有考虑集群内部的连原创 2020-06-13 18:35:58 · 647 阅读 · 0 评论 -
CS244W: Machine Learning with Graphs (4) ——网络中的社区结构
一、网络和社区我们通常认为网络的结构是这样的:那么是什么导致了这样的预期呢?网络中的数据流是如何流动的?不同结构的节点扮演了什么怎样不同的角色?不同的链接(长与短)又分别扮演了什么怎样不同的角色?在1960年Mark Granovetter对人们通过人际关系获取信息的研究中发现,人们通常经由不那么熟悉的人的介绍来获取工作。为什么这样的介绍人会比熟人更有帮助?关于友谊关系的两个观点:结构上,友谊关系遍布网络的不同部分在人与人交往时,友谊不是弱就是强而结构上,如果两个人都有一个共同的朋原创 2020-05-25 18:14:30 · 978 阅读 · 1 评论 -
CS244W: Machine Learning with Graphs (3) ——网络中的Motifs和结构
一、子网络(Subnetworks)子网络或子图是组成网络的基础模块,它们同样可以帮助我们表征和区分网络。节点数为3的有向子图的所有可能情况(不包含同构的子图):考虑使用图中所包含的这些子图的数量作为衡量尺度来进行分类:可以看到相同领域的网络都有相似数量的各种子图。 二、网络的Motifs网络的Motifs的定义:Recurring, significant patterns of interconnections.也就是足够小,出现次数足够多,比预想(与随机原创 2020-05-20 17:20:46 · 1723 阅读 · 0 评论 -
CS244W: Machine Learning with Graphs (2) ——图的性质和随机图模型
网络的四种性质度分布(Degree distribution)路径长度(Path length)聚类系数(Clustering coefficient)连通分量(Connected components)一、度分布(Degree distribution)定义:度分布P(k)为随机选择一个节点,该节点度数为k的概率。二、路径长度(Path length)图中的路径(Path in a Graph)定义:一个路径是指一串彼此之间相连的节点。一条路径可以相交并多次通过同一条边。例:原创 2020-05-12 21:16:34 · 2691 阅读 · 0 评论