- 博客(3)
- 收藏
- 关注
原创 2021-07-22
决策树是一种机器学习的方法。决策树的生成算法有ID3, C4.5和C5.0等。决策树是一种树形结构,其中每个内部节点表示一个属性上的判断,每个分支代表一个判断结果的输出,最后每个叶节点代表一种分类结果。 决策树是一种十分常用的分类方法,需要监管学习(有教师的Supervised Learning),监管学习就是给出一堆样本,每个样本都有一组属性和一个分类结果,也就是分类结果已知,那么通过学习这些样本得到一个决策树,这个决策树能够对新的数据给出正确的分类。这里通过一个简单的例子来说明决策树的构成思路: 给出如
2021-07-22 22:56:20 111
原创 西瓜书与南瓜书学习
logistic回归简介 logistic回归由Cox在1958年提出[1],它的名字虽然叫回归,但这是一种二分类算法,并且是一种线性模型。由于是线性模型,因此在预测时计算简单,在某些大规模分类问题,如广告点击率预估(CTR)上得到了成功的应用。如果你的数据规模巨大,而且要求预测速度非常快,则非线性核的SVM、神经网络等非线性模型已经无法使用,此时logistic回归是你为数不多的选择。 直接预测样本属于正样本的概率 logistic回归源于一个非常朴素的想法:对于二分类问题,能否直接预测出一个样本 属于正
2021-07-19 23:13:46 365
转载 2021-07-13
西瓜书第1章和第2章主要是讲一些基本概念和术语,大家自己看就好,不过第1章和第2章有一些知识点可以跳过不看,这些知识点在没有学过后面章节的具体机器学习算法之前较难理解,下面我将其划出来:第1章:【1.4-归纳偏好】可以跳过第2章:【2.3.3-ROC与AUC】及其以后的都可以跳过 通过学习南瓜书与西瓜书,并查询了相关资料之后,个人对过拟合有了一定的思考与了解 一、有哪些原因会导致过拟合? 数据层面 1.训练集和测试集的数据分布不一致 2.训练数据集太少,样本单一,模型无法从中学到泛化的规则 3.训练集中的噪
2021-07-13 21:55:43 75
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人