并查集
文章平均质量分 75
饮水思源的美西螈
什么?!你在看蒟蒻的简介! 点个关注再走吧 一名蒟蒻xxs
展开
-
并查集最重要的优化:路径压缩
路径压缩其实就是把一条线上的所有点的祖先尽可能的往上,依次来减少搜索的次数。此时已知祖先了,接下来就是把这条线上所有的节点的父节点都变成此时的x。如果我们直接find(a),就起不到把过程中的所有父节点都统计的作用了。因为我们优化的是find函数,所以我们先写一个find2。这样的路径压缩就会把时间复杂度从O(n)直线编程O(1)今天我们要来说另一种对并查集的优化:路径压缩。这样的话,共搜索次数为3次了,大大减少了时间。如果用我们刚才说的路径压缩的思想呢?这样,寻找c的搜索次数便可将至1次。原创 2022-12-11 18:22:16 · 1862 阅读 · 0 评论 -
图论必备算法之一:最小生成树 (易懂至极)
图论是个极其恶心的东西(除了最小生成树)——————饮水思源的美西螈在一给定的无向图G = (V, E) 中,(u, v) 代表连接顶点 u 与顶点 v 的边(即),而 w(u, v) 代表此边的权重,若存在 T 为 E 的子集且为无循环图,使得联通所有结点的的 w(T) 最小,则此 T 为 G 的最小生成树。最小生成树其实是最小权重生成树的简称。——————来自《百度百科》这样一看肯定看不懂(除了一些神犇)最小生成树,就是求出让整个图联通最少的权值这么一听,和最短路径有什么区别?原创 2022-11-25 22:36:38 · 3779 阅读 · 2 评论 -
数据结构——并查集 时间复杂度优化:启发式合并
并查集优化:启发式合并原创 2022-09-03 14:48:55 · 1167 阅读 · 1 评论 -
数据结构——并查集 详解(易懂)
数据结构——并查集原创 2022-08-30 19:18:09 · 543 阅读 · 1 评论 -
1396 家谱(并查集应用) 题解
并查集运用题解原创 2022-07-29 19:00:52 · 236 阅读 · 0 评论