1.由先序序列和中序序列构造二叉树
- 定理:任何n(n≥0)个不同节点的二叉树,都可由它的中序序列和先序序列唯一地确定。
- 证明(数学归纳法)
基础:当n=0时,二叉树为空,结论正确。
假设:设节点数小于n的任何二叉树,都可以由其先序序列和中序序列唯一地确定。
归纳:已知某棵二叉树具有n(n>0)个不同节点,其先序序列是 a0a1…an−1 ;中序序列是 b0b1…bk−1bkbk+1…bn−1 。
- 先序遍历“根-左-右”, a0 必定是二叉树的根节点
-
a0
必然在中序序列中出现,设在中序序列中必有某个
bk(0≤k≤n−1)
就是根节点
a0
。
- 由于 bk 是根节点,中序遍历“左-根-右”,故中序序列中 b0b1…bk−1 必是根节点 bk(a0) 左子树的中序序列,即 bk 的左子树有k个节点, bk+1…bn−1 必是根节点 bk(a0) 右子树的中序序列,即 bk 的右子树有 n−k−1 个节点。
- 对应先序序列,紧跟在根节点
a0
之后的k个节点
a1…ak
是左子树的先序序列,
ak+1…an−1
这
n−k−1
就是右子树的先序序列。
- 根据归纳假设,子先序序列 a1…ak 和子中序序列 b0b1…bk−1 可以唯一地确定根节点 a0 的左子树,而先序序列 ak+1…an−1 和子中序序列 bk+1…bn−1 可以唯一地确定根节点 a0 的右子树。
- 综上所述,这棵二叉树的根节点己经确定,而且其左、右子树都唯一地确定了,所以整个二叉树也就唯一地确定了。
-
例
根据定理的证明,写出下面的算法。
品味:以上构造性证明是突出体现计算机科学的案例。计算机学科的精髓就在于制造,即使在“理论性”味道的定理中,其证明过程,给出的就是“存在的这么一个东西”的构造方法。
[参考解答](btreee.h见算法库)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
2.由后序序列和中序序列构造二叉树
- 定理:任何n(n>0)个不同节点的二叉树,都可由它的中序序列和后序序列唯一地确定。
- 证明:(略)
[参考解答](btreee.h见算法库)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
3.由顺序存储结构转为二叉链存储结构
[参考解答](btreee.h见算法库)