布隆过滤器和布谷鸟过滤器详解

文章介绍了布隆过滤器和布谷鸟过滤器的基本概念、实现原理及优缺点。布隆过滤器利用空间换取时间,通过多个hash函数判断元素是否存在集合中,存在误判可能。布谷鸟过滤器作为增强版,允许删除元素,查询效率和空间利用率更高,但插入复杂度增加且有误删风险。这两种过滤器常用于高并发场景,如缓存击穿和推荐系统。
摘要由CSDN通过智能技术生成

今天和大家分享下布隆过滤器和布谷鸟过滤器

一.布隆过滤器

1.简单介绍

布隆过滤器是用于检索一个元素是否在一个集合中的算法,是一种用空间换时间的查询算法。

2.实现原理

布隆过滤器的存储结构是一个bitmap结构,初始值都是0,如下图所示:
在这里插入图片描述
当需要存储一个数据的时候,会通过多次(这里假设为3次)hash函数运算之后,计算出3个hash值,然后将计算出的这3个hash值当做坐标,将数组对应的坐标数据由0改成1,以此来标记这个数据已经存储在数组中了。如下图所示:
在这里插入图片描述
等到需要查询数据是否在数组中时,就通过hash计算出对应的坐标,判断是否全都为1,如果都为1数据就可能存在,如果有一个为0,则数据一定不存在。

  • 为什么这里说可能存在能,因为可能会出现hash碰撞的情况,不同的数据经过hash函数运算之后,计算出来的hash坐标却相同,导致数据本来不存在数组中,但是这里却判断存在,因此布隆过滤器会出现误判的情况,但是概率会很低,误判的概率和设置的hash运算次数是成反比的。
    如下图所示:
    在这里插入图片描述
    Data和Data2的hash值一样,但是Data数据存在,Data2不存在,在判断Data2的时候,布隆过滤器就会判断Data2也存在,由此产生误判。

这里有个很有意思的网站,大家可以自己动手去看下数据存储的具体过程:https://www.jasondavies.com/bloomfilter/网站内容如下:
在这里插入图片描述

总的来说,布隆过滤器的判断:存在->可能存在,不存在->一定不存在。

  • 根据上述特性,布隆过滤器在很多场景下,可以帮我们判断大部分的判断请求。因此较多用于高并发的场景下使用,比如处理缓存击穿、用户视频推荐等场景。
3. 布隆过滤器的缺点
  • 误判:
    上文已经说明一点了,就是布隆过滤器会产生误判,在此就不过多赘述了。
  • 当数组过大时,查询效率不高:
    因为布隆过滤器的判断方式是根据多次hash值判断的,当数组过大,那么hash值的跨度可能就越大,跨度大就是不连续,那么CPU的缓存命中率就会变低,就会影响查询效率。
  • 布隆过滤器不能删除元素:
    因为不同的数据可能会计算出相同的hash值,因此我们如果要删除某个元素,可能也会影响其他的元素的判断。在这个限制条件下,当数据量大的时候,就会导致很多的垃圾数据。并且数据量越大,误判率也就会越高。

二.布谷鸟过滤器

1.简单介绍

布谷鸟过滤器可以说是一个增强版的布隆过滤器,可以删除元素,查询效率更高,空间利用率更高。

2.实现原理

布谷鸟过滤器不同于布隆过滤器主要有两点改动:

  • hash算法:
    在布谷鸟过滤器中,数组中存储的是每个元素的"指纹信息",也就是hash运算之后的几个bit位。查询数据的时候,就是看看对应的位置上有没有对应的“指纹”信息,删除数据的时候,也只是抹掉该位置上的“指纹”而已。
  • 由于指纹是对元素进行 hash 计算得出的,那么必然会出现 hash 碰撞的问题,也就是“指纹”相同的情况,也就是会出现误判的情况,所以这点和布隆过滤器一样。
    布谷鸟过滤器的hash算法是基于布谷鸟哈希算法做了改进,计算公式如下:
fp = fingerprint(x)
h1 = hash(x)
h2 = h1 ^ hash(fp)  // 异或
  • 在上列公式可以看出,h2的位置是根据h1的位置计算出来的,也就是说我们知道了其中一个位置,就可以直接获取到另外一个位置,不需要再做全量的hash运算。因为使用的异或运算,所以这两个位置具有对偶性。这也是提高查询效率的一个点。
    只要保证 hash(fp) !=0,那么就可以确保 h2!=h1,也就可以确保不会出现自己踢自己的死循环问题了。
  • 这里还有个注意点:就是hash运算的时候,并没有对值进行长度取模运算,那么他是如何保证计算出来hash坐标,一定是在数组长度范围内呢?这就说到布谷鸟过滤器的一个限制条件了,那就是强制数组的长度必须是 2 的指数倍
    这个限制带来的好处就是,进行异或运算时,可以保证计算出来的下标一定是落在数组中的。

布谷鸟过滤器对布隆过滤器的另一个优化点就是存储结构:

  • 布谷鸟过滤器的存储结构是每个坐标下的空位是多个,不同于布隆过滤器的一个空位。如下图所示:
    在这里插入图片描述 布谷鸟过滤器会记录每个元素的两个hash位置,每个位置下都会有多个空位,空位内存储的就是元素的“指纹信息”。
  • 布谷鸟过滤器添加元素的流程是这样的:
    布谷鸟过滤器会先计算出元素对应的指纹信息,然后对元素进行hash运算,计算出元素的第一个存储坐标,该坐标下存在四个空位,如果四个空位中有空闲的,就将该元素的指纹信息存进去;如果没有空位,就会根据指纹和第一个hash坐标进行异或运算,计算出第二个坐标,如果第二个坐标下有空位,就将该元素的指纹信息存进去;如果还没有空位,那么该元素就会随机将一个空位中的指纹信息挤出,然后自己存进去,被挤出的指纹信息会计算出自己的第二个坐标,然后判断是否有空位,重复上述操作,直到达到一个阀值,布谷鸟过滤器返回false或进行扩容处理。

流程如下所示:
在这里插入图片描述

数据Data想要存储到布谷鸟过滤器中,首先会计算出h1和h2两个存储坐标,结果发现两个坐标的空位都已经“满员”了,此时会随机挤掉一个元素的指纹信息,假设挤掉了h1坐标的指纹3,然后指纹3会找自己的第二个坐标,然后判断是否有空位,有空位就存到第二个坐标下,如下图:
在这里插入图片描述
扩容:如果数组过小,会发生循环挤兑的情况,就可以设置最大挤兑次数,如果超过该次数,进行扩容,重新计算每个指纹的位置。

当 hash 函数固定为 2 个的时候,如果一个下标只能放一个元素,那么空间利用率是 50%。如果为 2,4,8 个元素的时候,空间利用率分别是 84%,95%,98%,可以发现空间利用率飙升。

3.布隆过滤器的缺点
  • 删除不完美,存在误删的概率。删除的时候知识删除了一份指纹副本,并不能确定此指纹副本是要删除的key的指纹。同时这个问题也导致了假阳性的情况。
  • 插入复杂度比较高。随着插入元素的增多,复杂度会越来越高,因为存在桶满,踢出的操作,所以需要重新计算,但综合来讲复杂度还是常数级别。
  • 存储空间的大小必须为2的指数的限制让空间效率打了折扣。
  • 同一个元素最多插入kb次,(k指哈希函数的个数,b指的是坐标下能装指纹的个数也可以说是坐标下桶的尺寸大小)如果布谷鸟过滤器支持删除,则必须存储同一项的多个副本。 插入同一项kb+1次将导致插入失败。 这类似于计数布隆过滤器,其中重复插入会导致计数器溢出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值