- 博客(10)
- 收藏
- 关注
翻译 xgboost调参
**在机器学习中调参是一门黑暗艺术,一个模型的最优参数取决于许多因素,因此不可能建立一个全方位的调参指导。 这篇文档试图提供一些关于xgboost参数的指导。**理解权衡Bias-Variance(偏倚和方差)如果你上过机器学习或者统计课程,这可能是其中最重要的概念之一。当我们允许模型变得更复杂的时候(比如,更深),模型会更加拟合训练数据,变成只有一点偏倚的模型。然而这样复杂的模型需要更多的数据拟
2017-08-23 14:48:01 1026
原创 神经网络/多层感知器(MLP)架构:选择隐藏层数量和大小的标准
神经网络/多层感知器隐藏层个数以及大小设置标准:隐藏层个数: 一个零隐藏层的模型可以解决线性可分数据。所以除非你早知道你的数据线性不可分,证明它也没什么坏处—为什么使用比任务需求更困难的模型。如果它是线性可分的那么一个更简单的技术可以工作,感知器也可以。 假设您的数据确实需要通过非线性技术进行分离,则始终从一个隐藏层开始。几乎肯定这就是你所需要的。如果你的数据使用MLP是可分的,那么
2017-07-26 11:32:31 53691 1
原创 自然语言处理基本过程理解
接触自然语言已有两年,下面谈一谈自己的一些理解自然语言基本处理过程:1.获取数据。可以是任何文本类型的数据,自有的或者爬虫爬取的数据。曾经用几行代码写了一个爬虫,爬取了几万条商品评论还是很好用的。2.数据预处理。这一部分很重要!很重要!很重要!有可能会决定着你文本处理任务的最终质量!1).观察数据。尤其是网上的数据质量参差不齐,一定要先观察数据,有没有异常符号,有的时候有很多空
2017-05-09 20:00:16 8629 1
原创 给定按升序排序的整数数组,找到给定目标值的起始和终止位置。 您的算法的运行时复杂度必须是O(log n)的顺序。
给定按升序排序的整数数组,找到给定目标值的起始和终止位置。 您的算法的运行时复杂度必须是O(log n)的顺序。
2017-05-09 17:31:09 2118
原创 Ubuntu下搭建简单的nginx文件服务器
1.下载nginxsudo apt-get install nginx2.启动nginxsudo /etc/init.d/nginx start3.添加文件 sudo gedit /etc/nginx/conf.d/file_server.conf4.在打开的文件中加入一下内容server { client_max_body_size 4G;
2017-05-06 13:44:53 1810 1
原创 递归计算a+aa+aaa.....+(n个a)
int SUM(int a,int n){ if(n>1) return a*n+SUM(a,n-1)*10; else return a;}
2017-03-06 16:23:55 3619 1
原创 出现module 'xgboost' has no attribute 'DMatrix'的临时解决方法
出现module 'xgboost' has no attribute 'DMatrix'的临时解决方法 最近刚刚开始使用xgboost,安装神马的都没问题。用了几天之后突然出现这样的问题: 我是想尽了办法,各种重装,最后终于还是没成,,,,,看到网上有一个办法: 重新新建Python文件,把你的代码拷过去;或者重命名也可以;还不行,就把代码复制到别的
2016-04-05 15:03:31 15897 10
原创 Windows下安装xgboost详解;
1.Windows安装xgboost详解工具:C++编译器(此处使用git for Windows ,MinGW);1. 下载git for Windows ,MinGW;2. 安装git for Windows (下一步,下一步,,,),MinGW(注意manager 中一定要选择c++ compiler的框!!!)3.打开git bash,进入你想要安装xgboost的文件夹
2016-04-05 14:47:25 675 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人