题意理解:
即给定一个整数N,要求返回一个小等于N的数。
且从左到右,数字成递增排列,即满足x1<=x2。
如: n = 332 输出: 299
如: n = 1234 输出: 1234
解题思路:
从两个角度考虑,从左到右确定这个目标数,还是从右到左确定这个目标数。
1.从左到右考虑,332,i=0,1时,符合递增,但i=2时,不符合递增,且取不到>=3的值
2.从右到左考虑,332,i=2时,取到2,2会限制前面取到很小的数字,将向下调整
i=2时,取数字9,i=1,时做-1, 则有 329,此时29满足条件。
i=1时,取到数字2时,会限制前面取很小的数字,则将数字向下调整
i=1时,取数字9,i=0,时做-1,则有 299,此时299满足调整,切实最大的满足条件的值。
采用贪心思路解题,全局最优解:满足条件的最大值
局部最优解,为了使高位取到尽可能大的值,地位要给出能取到的最大值。
1.贪心解题
public int monotoneIncreasingDigits(int n) {
char[] sNum=String.valueOf(n).toCharArray();
//设置从哪个节点开始设置9
int flag=sNum.length;
for(int i=sNum.length-1;i>0;i--){
if(sNum[i]<sNum[i-1]){
flag=i;
sNum[i-1]--;
}
}
for(int i=flag;i<sNum.length;i++){
sNum[i]='9';
}
return Integer.parseInt(String.valueOf(sNum));
}
2.分析
时间复杂度:O(n) 遍历满足条件的数的时间
空间复杂度:O(n) 保存结果所需的空间。
n为输入数的位数。
先确定末尾数,再逐步确定前面的数。