Leetcode 392 判断子序列

题意理解:

        给定字符串 s 和 t ,判断 s 是否为 t 的子序列。

        字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace""abcde"的一个子序列,而"aec"不是)。

        即判断s和t是否存在一个最长公共子序列,且该最长公共子序列==s

        这里采用一个动态规划的思路求解最长公共子序列,其长度==s.size

解题思路:

        (1)   定义dp数组

        定义二维dp数组,dp[i][j]表示s第i个元素前,t第j个元素前最长公共子序列。

        i,j指示的是元素之间的位置

        其i属于[0,s.size+1],  j属于[0,t.size+1]

      (2)初始化

        dp[0][j]和dp[i][0]表示第一行第一列,其都是用一个空数组和一个非空数组求其最长公共给子序列,所以全部初始化为0.

        其余元素初始化为0,后续操作会被覆盖掉。

      (3)递推公式

        if(s[i-1]==t[j-1])  dp[i][j]=dp[i-1][j-1]+1

        else dp[i][j]=max(dp[i][j-1],dp[i-1][j])

        (4)返回

        if(dp[s.size-1][t.size-1]==s.size) return true;

        else return false;

1.动态规划

public boolean isSubsequence(String s, String t) {
        int[][] dp=new int[s.length()+1][t.length()+1];
        for(int i=0;i<s.length();i++){
            Arrays.fill(dp[i],0);
        }
        for(int i=1;i<=s.length();i++){
            for(int j=1;j<=t.length();j++){
                if(s.charAt(i-1)==t.charAt(j-1)){
                    dp[i][j]=dp[i-1][j-1]+1;
                }else{
                    dp[i][j]=Math.max(dp[i-1][j],dp[i][j-1]);
                }
            }
        }
        if(dp[s.length()][t.length()]==s.length()) return true;
        return false;
    }

2.分析

时间复杂度:O(n^2)

空间复杂度:O(n^2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值