题意理解:
给定字符串 s 和 t ,判断 s 是否为 t 的子序列。
字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,
"ace"
是"abcde"
的一个子序列,而"aec"
不是)。即判断s和t是否存在一个最长公共子序列,且该最长公共子序列==s
这里采用一个动态规划的思路求解最长公共子序列,其长度==s.size
解题思路:
(1) 定义dp数组
定义二维dp数组,dp[i][j]表示s第i个元素前,t第j个元素前最长公共子序列。
i,j指示的是元素之间的位置
其i属于[0,s.size+1], j属于[0,t.size+1]
(2)初始化
dp[0][j]和dp[i][0]表示第一行第一列,其都是用一个空数组和一个非空数组求其最长公共给子序列,所以全部初始化为0.
其余元素初始化为0,后续操作会被覆盖掉。
(3)递推公式
if(s[i-1]==t[j-1]) dp[i][j]=dp[i-1][j-1]+1
else dp[i][j]=max(dp[i][j-1],dp[i-1][j])
(4)返回
if(dp[s.size-1][t.size-1]==s.size) return true;
else return false;
1.动态规划
public boolean isSubsequence(String s, String t) {
int[][] dp=new int[s.length()+1][t.length()+1];
for(int i=0;i<s.length();i++){
Arrays.fill(dp[i],0);
}
for(int i=1;i<=s.length();i++){
for(int j=1;j<=t.length();j++){
if(s.charAt(i-1)==t.charAt(j-1)){
dp[i][j]=dp[i-1][j-1]+1;
}else{
dp[i][j]=Math.max(dp[i-1][j],dp[i][j-1]);
}
}
}
if(dp[s.length()][t.length()]==s.length()) return true;
return false;
}
2.分析
时间复杂度:O(n^2)
空间复杂度:O(n^2)