题意理解:
给你一个字符串
s
,请你统计并返回这个字符串中 回文子串 的数目。回文字符串 是正着读和倒过来读一样的字符串。
子字符串 是字符串中的由连续字符组成的一个序列。
具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。
回文子串可以简单看作是元素对称的字符串,求一个字符串的会问字串,以下给出了一个例子:
输入:s = "aaa"
输出:6
解释:6个回文子串: "a", "a", "a", "aa", "aa", "aaa"
这里采用动态规划的思路来解决问题。解题思路:
(1)定义dp数组
dp[i][j]表示s中i位置到j位置的子串是否是回文子串:true|false
(2) 递推公式:
s[i]==s[j]时,i<=j
若i==j时,一定时回文子串:a
若i,j只间隔一个元素时,一定是回文子串:aba
若i,j间隔大于一个元素时,则看dp[i+1][j-1]=true时为回文子串
否则:
dp[i][j]=true
额外的使用count统计true的个数,即回文字串的个数。
(3)初始化:
全部初始为false
(4)遍历顺序,由于:dp[i][j]受dp[i+1][j-1]的影响,
所以总是从下往上,从左往右遍历
1.动态规划解题
public int countSubstrings(String s) {
boolean [][] dp=new boolean[s.length()][s.length()];
for(int i=0;i<s.length();i++){
Arrays.fill(dp[i],false);
}
int count=0;
for(int i=s.length()-1;i>=0;i--){
for(int j=0;j<s.length();j++){
if(i<=j&&s.charAt(i)==s.charAt(j)){
if(i==j||j-i==1||dp[i+1][j-1]==true){
dp[i][j]=true;
count++;
}
}
}
}
return count;
}
2.复杂度分析
时间复杂度:O(n^2)
空间复杂度:O(n^2)