Leetcode 647. 回文子串

本文介绍了如何使用动态规划解决字符串中回文子串的计数问题,通过构建dp数组并应用递推公式,得出每个子串是否为回文,最终统计true值的数量。时间复杂度为O(n^2),空间复杂度也为O(n^2)。
摘要由CSDN通过智能技术生成

题意理解:

        给你一个字符串 s ,请你统计并返回这个字符串中 回文子串 的数目。

        回文字符串 是正着读和倒过来读一样的字符串。

        子字符串 是字符串中的由连续字符组成的一个序列。

        具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。

        回文子串可以简单看作是元素对称的字符串,求一个字符串的会问字串,以下给出了一个例子:  

输入:s = "aaa"
输出:6
解释:6个回文子串: "a", "a", "a", "aa", "aa", "aaa"
      这里采用动态规划的思路来解决问题。

解题思路:

        (1)定义dp数组

            dp[i][j]表示s中i位置到j位置的子串是否是回文子串:true|false

          (2)   递推公式:

             s[i]==s[j]时,i<=j

                若i==j时,一定时回文子串:a

                若i,j只间隔一个元素时,一定是回文子串:aba

                若i,j间隔大于一个元素时,则看dp[i+1][j-1]=true时为回文子串

            否则:

                dp[i][j]=true

             额外的使用count统计true的个数,即回文字串的个数。

        (3)初始化:

                全部初始为false

          (4)遍历顺序,由于:dp[i][j]受dp[i+1][j-1]的影响,

                所以总是从下往上,从左往右遍历

        

1.动态规划解题

 public int countSubstrings(String s) {
        boolean [][] dp=new boolean[s.length()][s.length()];
        for(int i=0;i<s.length();i++){
            Arrays.fill(dp[i],false);
        }
        int count=0;
        for(int i=s.length()-1;i>=0;i--){
            for(int j=0;j<s.length();j++){
                if(i<=j&&s.charAt(i)==s.charAt(j)){
                    if(i==j||j-i==1||dp[i+1][j-1]==true){
                        dp[i][j]=true;
                        count++;
                    }
                }
            }
        }
        return count;
    }

2.复杂度分析

时间复杂度:O(n^2)

空间复杂度:O(n^2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值