题目描述:
完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2^h 个节点。
输入: 1 / \ 2 3 / \ / 4 5 6 输出: 6
例如此二叉树:最低层没有填满,并且最下面一层的节点都集中在该层最左边的若干位置。从图可以看出最底层为2层,则该层最多为1~4个节点。
对于任意二叉树可以有的解法是遍历根节点的左子树和根节点的右子树。最终加上根节点,就是整棵树的节点个数,代码如下:
public int countNodes(TreeNode root) {
if (root == null){
return 0;
}
return countNodes(root.left) + countNodes(root.right) + 1;
}
首先需要明确完全二叉树的定义:它是一棵空树或者它的叶子节点只出在最后两层,若最后一层不满则叶子节点只在最左侧。
再来回顾一下满二叉的节点个数怎么计算,如果满二叉树的层数为h,则总节点数为:2^h - 1.最底层节点数(2^(h-1)-1)。
那么我们来对 root 节点的左右子树进行高度统计,分别记为 left 和 right,有以下两种结果:
left == right。这说明,左子树一定是满二叉树,因为节点已经填充到右子树了,左子树必定已经填满了。所以左子树的节点总数我们可以直接得到,是 2^left - 1(左子树是一个满二叉树,根据上面公式计算),加上当前这个 root 节点,则正好是 2^left。再对右子树进行递归统计。
left != right。说明此时最后一层不满,但倒数第二层已经满了,可以直接得到右子树的节点个数。同理,右子树节点 +root 节点,总数为 2^right。再对左子树进行递归查找。
关于如何计算二叉树的层数,可以利用下面的递归来算,当然对于完全二叉树,可以利用其特点,不用递归直接算,具体请参考最后的完整代码。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public int countNodes(TreeNode root) {
if(root == null){
return 0;
}
int left = countLevel(root.left);
int right = countLevel(root.right);
if(left == right){
return countNodes(root.right) + (1<<left);
}else{
return countNodes(root.left) + (1<<right);
}
}
private int countLevel(TreeNode root){
int level = 0;
while(root != null){
level++;
root = root.left;
}
return level;
}
}