- 博客(10)
- 收藏
- 关注
原创 使用 PyAV 高效拆解视频帧:原理、实现与性能优化
PyAV 凭借其底层 FFmpeg集成和零拷贝特性,成为 Python 生态中视频处理的性能标杆。对于需要处理高清视频、实时流媒体或大规模视频分析的项目,PyAV 能显著提升效率并降低硬件成本。而通过多线程解码、GPU 加速和智能跳帧等优化手段,开发者可以进一步挖掘其潜力。
2025-04-18 10:31:14
887
原创 如何用 Python 递归删除文件系统中的所有空文件夹?
在日常开发或文件管理时,我们常常会遇到一些因项目重构、文件迁移或临时文件清理后残留的空文件夹。这些空目录不仅占用磁盘空间索引资源,还会让文件系统显得杂乱。本文将介绍如何用 Python 编写一个高效、安全的脚本,递归删除指定目录下的所有空文件夹(包括嵌套的深层空目录),并深入解析其实现原理。
2025-04-17 17:58:33
242
原创 NumPy 中 np.clip 的全面解析:数据裁剪利器
而 NumPy 的 np.clip 正是为此场景量身定制的工具。它能快速将数组元素约束到指定区间,提升数据质量与计算稳定性。在数据分析和机器学习中,我们经常需要将数据限制在合理的范围内。适用场景:不同特征列需要不同缩放规则。为什么需要数据裁剪?
2025-04-14 12:26:21
137
原创 使用SciPy的linear_sum_assignment方法解决最优分配问题
无论是物流调度中的车辆与货物匹配,还是计算机视觉中的目标追踪,甚至是人力资源中的任务分配,这类问题都可以抽象为线性分配问题(Linear Assignment Problem)。linear_sum_assignment是SciPy中一个强大且易用的工具,能够高效解决线性分配问题。Python的SciPy库提供了强大的linear_sum_assignment方法,能够高效解决这类问题。在实际的工程和算法应用中,我们常常会遇到一类经典的优化问题:如何将有限的资源以最优方式分配给不同的任务?
2025-04-13 14:26:25
736
原创 单类别目标检测评估指南:以人脸检测为例
本文介绍如何评估单类别目标检测模型的性能,使用人脸检测作为示例,并提供Python代码实现。主要涵盖IoU、Precision、Recall、AP等核心指标。
2025-02-28 09:35:53
310
原创 完整代码案例:目标检测评估实战
10, 10, 50, 50, 0], # 类别0的框[60, 60, 100, 100, 1] # 类别1的框。
2025-02-26 11:09:12
300
原创 深入解析混淆矩阵:从原理到实践的全面指南
混淆矩阵(Confusion Matrix)是一种N×N的表格(N为类别数),用于对比模型的预测结果与真实标签。核心元素解释TP(True Positive):正类样本被正确预测为正类。FN(False Negative):正类样本被错误预测为负类(漏检)。FP(False Positive):负类样本被错误预测为正类(误检)。TN(True Negative):负类样本被正确预测为负类。TP=80(正确识别80名患者)FN=20(漏诊20名患者)FP=10(误诊10名健康人)
2025-02-25 18:48:24
488
原创 深入解析 pytest 数据驱动原理:从源码到实践
在自动化测试中,数据驱动测试(Data-Driven Testing)是提高测试覆盖率和维护效率的核心技术。pytest 作为 Python 生态中最流行的测试框架之一,其 @pytest.mark.parametrize 装饰器为数据驱动提供了优雅的实现。本文将深入 pytest 数据驱动的源码实现,揭示其核心设计思想,并通过动手实践案例,帮助开发者掌握这一技术的底层原理,最终实现自定义数据驱动框架的能力。
2025-02-24 15:10:09
541
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人