sklearn.preprocessing之数据预处理

sklearn.preprocessing 提供了多个数据预处理类和方法,将原始特征向量转换为更适合于下游模型的表示。

  1. Standardization 标准化是列处理,对不同样本的同一个属性值进行标准化

  2. Normalization 归一化是行处理,对每一个样本的不同的属性值进行归一化

Standardization 标准化

标准化为均值为0,标准差为1的标准正态分布

对训练样本中的每个属性统计计算均值 μ \mu μ和标准差 σ \sigma σ,然后对需要标准化的数据进行处理:
x ∗ = x − μ σ x^{*}=\frac{x-\mu}{\sigma} x=σxμ

from sklearn import preprocessing
import numpy as np

X_train = np.array([[1., -1., 2.], [2., 0., 0.], [0., 1., -1.], [1., 1., -1.]])
scaler = preprocessing.StandardScaler().fit(X_train)
# 对每一列的值,即同一个属性对应的值,求均值和方差
print(scaler)
print("均值:", scaler.mean_)
print("标准差:", scaler.scale_)
X_scaled = scaler.transform(X_train)
print("转换后的数据:", X_scaled)
print("转换后的均值:", X_scaled.mean(axis=0))
print("转换后的标准差:", X_scaled.std(axis=0))

输出:

StandardScaler()
均值: [1.   0.25 0.  ]
方差: [0.70710678 0.8291562  1.22474487]
转换后的数据: [[ 0.         -1.50755672  1.63299316]
 [ 1.41421356 -0.30151134  0.        ]
 [-1.41421356  0.90453403 -0.81649658]
 [ 0.          0.90453403 -0.81649658]]
转换后的均值: [0.00000000e+00 5.55111512e-17 0.00000000e+00]
转换后的标准差: [1. 1. 1.]

用训练集得到的scaler ,通过transform方法来标准化测试集。用inverse_transform 可还原得到原来的数据

# 用训练得到的scaler,来标准化测试集
X_test = np.array([[4., -4., 20.], [8., 10., 10.], [10., 11., -11.]])
X_scaled = scaler.transform(X_test)
print("转换后的数据:\n", X_scaled)
# 还原数据
X_ori = scaler.inverse_transform(X_scaled)
print("还原数据:\n", X_ori)
转换后的数据:
 [[ 3.67423461 -4.89897949 15.76841327]
 [ 8.5732141  12.24744871  7.75057602]
 [11.02270384 13.47219359 -9.08688223]]
还原数据:
 [[  4.  -4.  20.]
 [  8.  10.  10.]
 [ 10.  11. -11.]]

注意,测试集标准化后并不一定服从标准正态分布,因为先前统计的均值和标准差只是训练集的;而测试集只要保证和原来的训练集做一致的变化即可,下同。

标准化一定的取值范围

以标准化到0-1之间为例,对训练样本中的每个属性统计最大值 max ⁡ \max max和最小值 min ⁡ \min min,然后对需要标准化的数据进行处理:

x ∗ = x − min ⁡ max ⁡ − min ⁡ x^{*}=\frac{x-\min }{\max -\min } x=maxminxmin

from sklearn import preprocessing
import numpy as np

X_train = np.array([[1., -1., 2.],
                    [2., 0., 0.],
                    [0., 1., -1.]])

min_max_scaler = preprocessing.MinMaxScaler()
# fit_transform 将初始化scaler和transform合成一步
X_train_minmax = min_max_scaler.fit_transform(X_train)
print(X_train_minmax)
# 如何计算的,不太懂
print(min_max_scaler.scale_)

输出:

[[0.5        0.         1.        ]
 [1.         0.5        0.33333333]
 [0.         1.         0.        ]]

[0.5        0.5        0.33333333]

用训练集得到的scaler ,通过transform方法来标准化测试集。用inverse_transform 可还原得到原来的数据

X_test = np.array([[-3., -1., 4.]])
X_test_minmax = min_max_scaler.transform(X_test)
print(X_test_minmax)
original_X_test = min_max_scaler.inverse_transform(X_test_minmax)
print(original_X_test)

输出:

[[-1.5         0.          1.66666667]]
[[-3. -1.  4.]]

注意,测试集标准化后,范围可能不在[0,1]之间,因为先前统计的最大值和最小值只是训练集的;而测试集只要保证和原来的训练集做一致的变化即可

更通用的,标准化到a,b之间,传入(a,b)作为MinMaxScaler参数,例如:

x ′ = x − min ⁡ max ⁡ − min ⁡ x^{'}=\frac{x-\min }{\max -\min } x=maxminxmin

x ∗ = x ′ ∗ ( b − a ) + a x^{*}=x^{'}*(b-a) + a x=x(ba)+a

from sklearn import preprocessing
import numpy as np

X_train = np.array([[1., -1., 2.],
                    [2., 0., 0.],
                    [0., 1., -1.]])
a = -1
b = 1
min_max_scaler = preprocessing.MinMaxScaler((a, b))
X_train_minmax = min_max_scaler.fit_transform(X_train)
print(X_train_minmax)
#
print(min_max_scaler.scale_)

输出:

[[ 0.         -1.          1.        ]
 [ 1.          0.         -0.33333333]
 [-1.          1.         -1.        ]]
 
[1.         1.         0.66666667]

标准化到[-1,1]为例,使用MaxAbsScaler,对训练样本中的每个属性统计最大值 max ⁡ \max max,然后对需要标准化的数据进行处理:

x ∗ = x max ⁡ x^{*}=\frac{x}{\max} x=maxx

from sklearn import preprocessing
import numpy as np

X_train = np.array([[1., -1., 2.],
                    [2., 0., 0.],
                    [0., 1., -1.]])

max_abs_scaler = preprocessing.MaxAbsScaler()
X_train_maxabs = max_abs_scaler.fit_transform(X_train)
print(X_train_maxabs)
# 每一列的最大值
print(max_abs_scaler.scale_)

输出:

[[ 0.5 -1.   1. ]
 [ 1.   0.   0. ]
 [ 0.   1.  -0.5]]
 
[2. 1. 2.]
X_test = np.array([[-3., -1., 4.]])
X_test_maxabs = max_abs_scaler.transform(X_test)
print(X_test_maxabs)

输出:

[[-1.5 -1.   2. ]]

注意:用这种方法将数据转到[-1,1]之间与MaxAbsScaler是不一样的

Normalization 归一化

对每个样本进行处理.

每个样本的归一化都只与当前的样本有关,而与其他样本为无关,而Standardization 需要用到不同样本之间某个属性取值

L2

对每个样本 x x x中的第 i i i个特征做如下处理

x i ∗ = x i ( x 1 2 + x 2 2 + x 3 2 + . . . + x n 2 ) 1 2 x_{i}^{*}=\frac{x_i}{(x_1^2 +x_2^2+x_3^2+...+x_n^2)^{\frac{1}{2}}} xi=(x12+x22+x32+...+xn2)21xi

from sklearn import preprocessing
import numpy as np

X = [[1., -1., 2.],
     [2., 0., 0.],
     [0., 1., -1.]]
X_normalized = preprocessing.normalize(X, norm='l2')

print(X_normalized)

输出:

[[ 0.40824829 -0.40824829  0.81649658]
 [ 1.          0.          0.        ]
 [ 0.          0.70710678 -0.70710678]]
L1

对每个样本 x x x中的第 i i i个特征做如下处理

x i ∗ = x i ( ∣ x 1 ∣ + ∣ x 2 ∣ + ∣ x 3 ∣ + . . . + ∣ x n ∣ ) x_{i}^{*}=\frac{x_i}{(|x_1| +|x_2|+|x_3|+...+|x_n|)} xi=(x1+x2+x3+...+xn)xi

from sklearn import preprocessing
import numpy as np

X = [[1., -1., 2.],
     [2., 0., 0.],
     [0., 1., -1.]]
X_normalized = preprocessing.normalize(X, norm='l1')

print(X_normalized)

输出:

[[ 0.25 -0.25  0.5 ]
 [ 1.    0.    0.  ]
 [ 0.    0.5  -0.5 ]]
max

对每个样本 x x x中的第 i i i个特征做如下处理

x i ∗ = x i m a x ( x 1 , x 2 , x 3 , . . . , x n ) x_{i}^{*}=\frac{x_i}{max(x_1,x_2,x_3,...,x_n)} xi=max(x1,x2,x3,...,xn)xi

from sklearn import preprocessing
import numpy as np

X = [[1., -1., 2.],
     [2., 0., 0.],
     [0., 1., -1.]]
X_normalized = preprocessing.normalize(X, norm='max')

print(X_normalized)

输出:

[[ 0.5 -0.5  1. ]
 [ 1.   0.   0. ]
 [ 0.   1.  -1. ]]

主要内容来自官网

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值