自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

“365天深度学习训练营”报名进行中~

独立算法工程师|《深度学习100例》作者

  • 博客(548)
  • 资源 (2)
  • 收藏
  • 关注

原创 YOLOv10涨点改进:原创自研 | GhostNet融合 | 从廉价的操作中生成更多的特征图

比如下图是对Resnet-50某层输出的可视化,每张图代表一个通道,图中三组颜色相连的图非常相似。论文将一组中的一张图称为本征图(intrinsic),其他和本征图相似的图称为本征图的魅影(ghost)。那么,既然ghost和Intrinsic非常相似,我们是否可以通过一种相对简单的、计算量较少的运算代替运算量大的卷积操作生成ghost图?ghost模块就是基于这种想法,提出用简单的线性运算生成ghost,但总共的通道数(intrinsic+ghost)以及生成特征图的大小和原来保持一致。

2024-06-07 12:16:38 276

原创 小团体~第八波

开始报名啦!

2024-04-16 11:11:49 742

原创 【GAN小白入门】Semi-Supervised GAN 理论与实战

创建一个标签嵌入层,用于将条件标签映射到潜在空间# 初始化图像尺寸,用于上采样之前# 第一个全连接层,将随机噪声映射到合适的维度# 生成器的卷积块nn.Tanh(),return img"""返回每个鉴别器块的层"""if bn:# 鉴别器的卷积块# 下采样图像的高度和宽度# 输出层self.adv_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, 1), nn.Sigmoid()) # 用于鉴别真假的输出层。

2023-09-05 11:21:45 1058

原创 GAN入门|第四篇:生成手势图像|可控制生成

🏡 我的环境:👉考虑到大家算力有限,这里为大家提供我已经训练好生成器模型,大家可自行下载🚀 深度学习新人必看:🚀 往期精彩内容:条件生成对抗网络(CGAN)是在生成对抗网络(GAN)的基础上进行了一些改进。对于原始GAN的生成器而言,其生成的图像数据是随机不可预测的,因此我们无法控制网络的输出,在实际操作中的可控性不强。针对上述原始GAN无法生成具有特定属性的图像数据的问题,Mehdi Mirza等人在2014年提出了条件生成对抗网络,通过给原始生成对抗网络中的生成器G和判别器D增加额外的条件,例

2023-07-30 13:49:07 957

原创 YOLO算法改进指南【中阶改进篇】:3.添加SA-Net注意力机制

当前的 CNN 中的 attention 机制主要包括:channel attention 和 spatial attention,当前一些方法(GCNet 、CBAM 等)通常将二者集成,容易产生 converging difficulty 和 heavy computation burden 的问题。尽管 ECANet 和 SGE 提出了一些优化方案,但没有充分利用 channel 和 spatial 之间的关系。

2023-04-26 10:22:57 1628 12

原创 Pytorch入门实战 | 第P3周:天气识别

☕难度:新手入门⭐。

2022-10-03 14:07:02 1522 8

原创 深度学习100例-循环神经网络(LSTM)实现股票预测 | 第10天

文章目录一、前言二、LSTM的是什么三、准备工作1.设置GPU2.设置相关参数3.加载数据四、数据预处理1.归一化2.时间戳函数五、构建模型六、激活模型七、训练模型八、结果可视化1.绘制loss图2.预测3.评估一、前言今天是第10天,我们将使用LSTM完成股票开盘价格的预测,最后的R2可达到0.74,相对传统的RNN的0.72提高了两个百分点。我的环境:语言环境:Python3.6.5编译器:jupyter notebook深度学习环境:TensorFlow2.4.1来自专栏:【深度学习

2022-05-12 09:40:22 89049 110

原创 深度学习100例-卷积神经网络(CNN)3D医疗影像识别 | 第23天

大家好,我是「K同学啊 」!好像有一段时间没有更新了,这段事情真的太多了,自己也有一点点小偷懒,但是我还在坚持哈,等开学了更新频率可能就会稳定下来。唠嗑结束,进入正题,前段时间帮别人做了一个3D分类的活,想着怎么也得整理出一篇博客给大家吧,于是乎就有了这篇文章。这篇文章讲解的项目相对早期的项目有如下改进:1.设置的动态学习率2.加入的早停策略3.模型的保存时间更加“智能”4.在数据加载这块也有明显的优化???? 我的环境:语言环境:Python3.6.5编译器:jupyter not

2022-02-20 20:09:43 6673 19

原创 YOLOv10涨点改进|引入BoTNet、Ghost与CA注意力机制,打造高效轻量级检测器

👉 独家改进,对现有YOLOv10进行二次创新,提升检测精度,适合科研创新度十足,强烈推荐🌟 统一使用 YOLOv10 代码框架,💥 本博客包含大量的改进方式,降低改进难度,改进点包含【Neck特征融合】【Head检测头】【注意力机制】【IoU损失函数】【NMS】【Loss计算方式】【自注意力机制】【数据增强部分】【标签分配策略】【激活函数】等各个部分。🔥 专栏创新点教程均有不少同学反应和我说已经在自己的数据集上有效涨点啦!!

2024-07-07 09:49:08 807

原创 YOLOv10涨点改进|添加可变形注意力机制DAttention

👉 独家改进,对现有YOLOv10进行二次创新,提升检测精度,适合科研创新度十足,强烈推荐🌟 统一使用 YOLOv10 代码框架,💥 本博客包含大量的改进方式,降低改进难度,改进点包含【Neck特征融合】【Head检测头】【注意力机制】【IoU损失函数】【NMS】【Loss计算方式】【自注意力机制】【数据增强部分】【标签分配策略】【激活函数】等各个部分。🔥 专栏创新点教程均有不少同学反应和我说已经在自己的数据集上有效涨点啦!!

2024-07-05 13:55:09 418

原创 YOLOv10剪枝|模型轻量化实现方案 - 模型剪枝手把手教学

👉 独家改进,对现有YOLOv10进行二次创新,提升检测精度,适合科研创新度十足,强烈推荐🌟 统一使用 YOLOv10 代码框架,💥 本博客包含大量的改进方式,降低改进难度,改进点包含【Neck特征融合】【Head检测头】【注意力机制】【IoU损失函数】【NMS】【Loss计算方式】【自注意力机制】【数据增强部分】【标签分配策略】【激活函数】等各个部分。🔥 专栏创新点教程均有不少同学反应和我说已经在自己的数据集上有效涨点啦!!

2024-06-25 10:07:19 520

原创 YOLOv10改进|改进结合轻量型Ghost模块

👉 独家改进,对现有YOLOv10进行二次创新,提升检测精度,适合科研创新度十足,强烈推荐🌟 统一使用 YOLOv10 代码框架,💥 本博客包含大量的改进方式,降低改进难度,改进点包含【Neck特征融合】【Head检测头】【注意力机制】【IoU损失函数】【NMS】【Loss计算方式】【自注意力机制】【数据增强部分】【标签分配策略】【激活函数】等各个部分。🔥 专栏创新点教程均有不少同学反应和我说已经在自己的数据集上有效涨点啦!!

2024-06-21 08:57:38 192

原创 YOLOv10涨点改进|引入BoTNet结构与CA注意力机制,打造高效轻量级检测器

👉 独家改进,对现有YOLOv10进行二次创新,提升检测精度,适合科研创新度十足,强烈推荐🌟 统一使用 YOLOv10 代码框架,💥 本博客包含大量的改进方式,降低改进难度,改进点包含【Neck特征融合】【Head检测头】【注意力机制】【IoU损失函数】【NMS】【Loss计算方式】【自注意力机制】【数据增强部分】【标签分配策略】【激活函数】等各个部分。🔥 专栏创新点教程均有不少同学反应和我说已经在自己的数据集上有效涨点啦!!

2024-06-13 17:11:45 330

原创 YOLOv10改进|采用ADown降采样模块有效融合

在backbone中,ADown可以用于在特征图的不同层之间进行下采样,而在head部分,它可以帮助进一步细化特征图的分辨率,以便于更精确的目标检测。例如,在YOLOv8的改进中,将ADown添加到backbone和head处,可以提供多个配置选项以适应不同的改进方法,这有助于实现更高的性能32。理论上,正确流程应该是:通过理论推导,获取合理的改进方案(即:设计、修改、调整模块等等),通过实验验证方案的有效性,进而将成果转化为科研论文。是YOLOv9中的下采样模块,对不同的数据场景具有一定的可学习能力。

2024-06-12 16:12:30 91

原创 YOLOv10改进|采用ADown降采样模块有效融合

理论上,正确流程应该是:通过理论推导,获取合理的改进方案(即:设计、修改、调整模块等等),通过实验验证方案的有效性,进而将成果转化为科研论文。我们能做的就是基于现有知识,对YOLOv10进行尝试性改进,一旦发现了某个突破口,则对该点进行展开分析,对改进方案进行深入研究探索。还是那句话,不是ADown模块的原理不重要,而是在做创新这件事情上,我们要功利一些。像我在前面提到的那样,现阶段以学习为主,尝试将自己的想法加以实践,进而实验验证。**第一步:**在block.py文件中新增ADown类。

2024-06-12 15:59:52 504

原创 YOLOv10涨点改进:原创自研 | GhostNet融合 | 从廉价的操作中生成更多的特征图

Ghost Module是一种模型压缩的方法,即在保证网络精度的同时减少网络参数和计算量,从而提升计算速度(speed),降低延时(latency)。Ghost 模块可以代替现有卷积网络中的每一个卷积层。基于Ghost模块,论文作者堆叠Ghost模块构建了GhostNet。模型提出的缘由:卷积输出的一组特征图在通道方向上,有部分通道内容相似。比如下图是对Resnet-50某层输出的可视化,每张图代表一个通道,图中三组颜色相连的图非常相似。

2024-06-07 09:32:24 64

原创 小团体~抱团学习了!

教案与我的《深度学习100例》一样,都包含可以直接运行的源码与数据。一个深度学习领域博主,CSDN的博客专家、有八万+粉丝,和鲸特邀导师,《深度学习100例》的作者,一个收到中科院等诸多名校、名企offer的自由摄影爱好者。:希望为大家提供一个好的学习环境,大家共同努力形成一个互帮互助的良性循环,群里大家可以相互讨论交流学习过程中的点滴,希望训练营存在对大家是积极的。"365天深度学习训练营"向大家进行了承诺,与此相伴的,对大家的要求也将更高,这将明显体现在各位每周上交的作业上面。

2024-01-17 17:58:16 1331 1

原创 这是要被奖金给砸晕啊......

钱真多

2023-10-09 16:42:00 937

原创 YOLOv5 如何关闭wandb

【代码】YOLOv5 如何关闭wandb。

2023-09-11 11:07:16 626

原创 9月份抱团学习❗开启报名通道

9月份抱团学习,我们都在你不来吗?

2023-08-31 17:09:05 653

原创 yolov5中的best.pt是如何确定的

好理解,就是最后一个epoch的输出,但是best是啥意思?中的fitness函数,可以看到是将。我们来一行行看train.py源码。按照1:9的比重确定最佳模型的。

2023-08-04 11:14:58 2560

原创 深度学习100例 | 第31天-卷积神经网络(DenseNet)识别生活物品

🚀。

2023-07-28 09:51:28 2692 3

原创 YOLO算法改进指南【中阶改进篇】:9.添加S2-MLPv2注意力机制

相比于现有的 MLP 的结构,S2-MLP 的一个重要优势是仅仅使用通道方向的全连接(1×11 \times 11×1卷积)是可以作为 Backbone 的,期待该团队后续的进展。S2-MLPv2 其实是通过 Spatial-shift 和 Split Attention 代替原有的N×NN \times NN×N卷积,本质上并没有延续 MLP-Mixer 架构中长距离依赖的思想。S2-MLPv2 中也并没有长距离依赖的使用。

2023-07-27 21:40:24 648

原创 labels.unsqueeze(1) 维度增加

例如,生成器可能需要了解每个生成的图像应该对应哪个类别,而判别器可能需要将图像和标签组合起来来判断真实性。因此,在GAN的训练过程中,可能需要将标签的形状从一维张量变为二维张量,并在特定维度上增加维度。这样做的目的是与生成器或判别器的输入数据形状相匹配,从而能够正确地传递标签信息。是 PyTorch 中的一个方法,用于在给定维度上增加一个维度。,它将在维度1的位置(索引位置从0开始)上增加一个新的维度。结果是一个二维张量,其中有N行和1列,每一行表示一个样本的标签。是一个一维张量,表示每个样本对应的标签。

2023-07-21 14:05:59 388

原创 小白入门深度学习 | 6-6:Inception v3 算法原理

Inception v3由谷歌研究员Christian Szegedy等人在2015年的论文《Rethinking the Inception Architecture for Computer Vision》中提出。Inception v3是Inception网络系列的第三个版本,它在ImageNet图像识别竞赛中取得了优异成绩,尤其是在大规模图像识别任务中表现出色。然而,由于其较大的网络结构和计算复杂度,Inception v3在实际应用中可能需要较高的硬件要求。此处如果 n=3,则与上一张图像一致。

2023-07-19 09:19:09 773

原创 小白入门深度学习 | 3-2:激活函数activation

生物神经网络启发了人工神经网络(ANN)的发展。但是,人工神经网络并非大脑运作的近似表示。不过在我们了解为什么在人工神经网络中使用激活函数之前,先了解生物神经网络与激活函数的相关性是很有用处的。典型神经元的物理结构包括细胞体、向其他神经元发送信号的轴突和接收其他神经元发送的信号或信息的树突。上图中,红色圆圈代表两个神经元交流的区域。神经元通过树突接收来自其他神经元的信号。树突的权重叫作突触权值,将和接收的信号相乘。来自树突的信号在细胞体内不断累积,如果信号强度超过特定阈值,则神经元向轴突传递信息。

2023-07-18 17:58:59 488

原创 小白入门深度学习 | 6-5:Inception-v1(2014年)详解

GoogLeNet首次出现在2014年ILSVRC 比赛中获得冠军。这次的版本通常称其为Inception V1。Inception V1有22层深,参数量为5M。同一时期的VGGNet性能和Inception V1差不多,但是参数量也是远大于Inception V1。Inception Module是Inception V1的核心组成单元,,如下图a。按照这样的结构来增加网络的深度,虽然可以提升性能,但是还面临计算量大(参数多)的问题。为改善这种现象,借鉴。

2023-07-18 09:45:25 746

原创 残差网络 与 深度残差网络 关系详解

深度残差网络(Deep Residual Network): 深度残差网络是指由多个残差块组成的深度神经网络。不同点:"深度残差网络"这个术语通常用于指代ResNet结构的特定实现,特别是指用于解决计算机视觉问题的网络,而ResNet一词则更广泛地指代使用残差块的任何网络。总结:深度残差网络是ResNet的一个特定实现,通过引入残差块并使用跳跃连接,允许构建更深的神经网络。残差网络(ResNet)和深度残差网络(Deep Residual Network)是两个与深度学习相关的概念,它们有些异同之处。

2023-07-18 09:34:16 510

原创 小白入门深度学习 | 6-4:ResNet-50(2015年)详解

残差网络ResNet在2015年由何恺明等提出,因为它简单与实用并存,随后很多研究都是建立在ResNet-50或者ResNet-101基础上完成。ResNet主要解决深度卷积网络在深度加深时候的“退化”问题。在一般的卷积神经网络中,增大网络深度后带来的第一个问题就是梯度消失、爆炸,这个问题Szegedy提出BN层后被顺利解决。BN层能对各层的输出做归一化,这样梯度在反向层层传递后仍能保持大小稳定,不会出现过小或过大的情况。

2023-07-18 09:22:26 1291

原创 TextCNN 实现股票时间序列预测(TensorFlow2版)

本专栏旨在通过实战案例帮助深度学习初学者通过实战案例。

2023-07-17 17:25:36 947

原创 BiLSTM(双向LSTM)实现股票时间序列预测(TensorFlow2版)

BiLSTM(双向长短期记忆网络)是一种深度学习模型,属于循环神经网络(Recurrent Neural Network,RNN)的一种变体。BiLSTM 在处理序列数据时能够同时考虑上下文信息,因此在自然语言处理(Natural Language Processing,NLP)任务中得到广泛应用。

2023-07-17 10:49:16 1720

原创 YOLO算法改进指南:8.添加SimAM注意力机制 |无参数注意力模块

本文提出一种概念简单且非常有效的注意力模块。不同于现有的通道/空域注意力模块,该模块无需额外参数为特征图推导出3D注意力权值。具体来说,本文基于著名的神经科学理论提出优化能量函数以挖掘神经元的重要性。本文进一步针对该能量函数推导出一种快速解析解并表明:该解析解仅需不超过10行代码即可实现。该模块的另一个优势在于:大部分操作均基于所定义的能量函数选择,避免了过多的结构调整。最后,本文在不同的任务上对所提注意力模块的有效性、灵活性进行验证。

2023-07-16 15:31:05 3853

原创 GAN入门|第二篇:人脸图像生成(DCGAN)

自定义权重初始化函数,作用于netG和netD def weights_init(m) : # 获取当前层的类名 classname = m . __class__ . __name__ # 如果类名中包含'Conv',即当前层是卷积层 if classname . find('Conv')!

2023-07-16 10:03:54 814

原创 YOLOv5解析 | 第五篇:yolo.py文件解读

这个文件是YOLOv5网络模型的搭建文件,如果你想改进YOLOv5,那么这么文件是你必须进行修改的文件之一。文件内容看起来多,其实真正有用的代码不多的,重点理解好我文中提到的一个函数两个类即可。注:由于YOLOv5版本众多,同一个文件对于细节处你可能会看到不同的版本,不用担心这都是正常的,注意把握好整体架构即可。

2023-07-12 11:33:25 581 1

原创 YOLOv5解析 | 第四篇:common.py文件详解

该文件是实现YOLO算法中各个模块的地方,如果我们需要修改某一模块(例如C3),那么就需要修改这个文件中对应模块的的定义。这里我先围绕代码,带大家过一遍各个模块的定义,详细介绍我将在后续的教案中逐步展开。由于YOLOv5版本问题,同一个模块你可能会看到不同的版本,这都是正常的,以官网为主即可。

2023-07-12 11:31:10 406

原创 YOLOv5解析 | 第三篇:yolov5s.yaml文件详解

YOLOv5配置了4种不同大小的网络模型,分别是YOLOv5sYOLOv5mYOLOv5lYOLOv5x,其中YOLOv5s是网络深度和宽度最小但检测速度最快的模型,其他3种模型都是在YOLOv5s的基础上不断加深、加宽网络使得网络规模扩大,在增强模型检测性能的同时增加了计算资源和速度消耗。出于对检测精度、模型大小、检测速度的综合考量,本文选择YOLOv5s作为研究对象进行介绍。文件是YOLOv5s网络结构的定义文件,如果你想改进算法的网络结构,需要先修改该文件中的相关参数,然后再修改与中的相关代码。

2023-07-12 11:27:32 1024

原创 TensorFlow入门实战|第R1周:RNN-心脏病预测

【代码】TensorFlow入门实战|第R1周:RNN-心脏病预测。

2023-07-10 17:48:05 1183 1

原创 @tf.function 是什么意思,作用是什么

相比于动态图,静态图可以进行更多的优化,例如自动并行化、自动求导等,从而提高计算效率。装饰器可以将函数转换为 TensorFlow 图,提高函数的执行效率并支持自动优化和自动求导等功能,适用于大部分的 TensorFlow 计算任务。:装饰器可以将函数中的部分张量运算转换为 TensorFlow 图,这样可以将大部分计算转移到 GPU 上进行加速,提高计算性能。:通过将函数转换为 TensorFlow 图,可以避免重复的计算和 Python 解释器的开销,从而提高函数的执行效率。

2023-07-08 11:03:40 1211

原创 YOLO算法改进指南【中阶改进篇】:7. 添加SK-Net注意力机制

受皮质神经元根据不同的刺激可动态调节其自身的receptive field的启发,提出了一种动态选择机制,根据输入信息的多个尺度自适应地调整其感受野大小。设计了一种称为选择核(SK)单元的结构块,利用softmax attention 对不同核大小的多个分支进行融合。

2023-07-06 13:18:39 467

原创 新手入门深度学习 | 6-3:VGG-16(2015年)详解

VGG网络根据不同的层数和不同的卷积核的参数配置,可分为多个类型的卷积模型, 如下表所示。VGG-16有五个max-pooling层,也就是VGG-16有五个阶段的特征提取,每个阶段的卷积都是从64个参数开始,到512个参数结束,每个阶段都增加一倍,直到达到512个参数为止,整个模型的计算过程如下表所示。的卷积核具有更强的非线性,使得特征图具有更强的特征性,避免过拟合。的卷积核进行卷积,卷积的步长都是1,这种在一个卷积层用两个。的卷积核做卷积,可以使得整个算法参数量下降,同时 采用2个。

2023-07-05 14:01:24 802

时序数据-LSTM模型-实现用电量预测.rar

时序数据-LSTM模型-实现用电量预测,里面包含数据和代码,代码讲解见:https://mtyjkh.blog.csdn.net/article/details/115612319

2021-04-13

垃圾短信数据集(中文).rar

包含1万多条短信,垃圾短信标记为1,正常短信标记为0。

2020-08-18

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除