串的模式匹配算法_BF算法

#include<stdio.h>
#define MANLEN 25
typedef struct
{
    char ch[25];
    int length;
}SString;
int Index_BF(SString S, SString T, int pos)   
//T为模式串, S为主串,   返回模式T在主串S中第pos
//个字符开始第一次出现的位置。若不存在则返回0;
{
    int i = pos, j = 1;
    while(i <= S.length && j <= T.length){  //保证两个串都为超过自身长度
        if(S.ch[i] == T.ch[j]){
            i++;
            j++;
        }
        else{
            i = i - j + 2;  
            // 在主串中后退,退到第n次比较的位置的后一位,
            //进行第n+1次从头(当 j == 0 的位置,也就是
            //模式串的第一个字母)比较。
            j = 1;  //从模式串的第一个开始再重新比较;
        }
    }
    if(j > T.length) return (i - j + 1);
    else return 0;
}
int main()
{
    SString S, T;
    printf("主串长度   = ");
    scanf("%d",&S.length);
    printf("主串内容   = ");
    scanf("%s", S.ch+1);//地址加一 是因为 S.sh[0]不利用
    printf("模式串长度 = ");
    scanf("%d", &T.length);
    printf("模式串内容 = ");
    scanf("%s", T.ch+1);//地址加一 是因为 S.sh[0]不利用
    int i, pos = 1;
    i = Index_BF(S, T, pos);
    if(i == 0)
        printf("match fault");
    else
        printf("match success loc = %d", i);
    return 0;
}

 

 

运行结果:

 


 

BF算法和KMP算法都是模式匹配算法,但是它们的时间复杂度不同。BF算法的时间复杂度为O(m*n),其中m和n分别为主模式的长度。而KMP算法的时间复杂度为O(m+n)。因此,当模式较长时,KMP算法的效率更高。 下面是BF算法和KMP算法的介绍和演示: 1. BF算法(暴力匹配算法BF算法是一种朴素的模式匹配算法,它的思想是从主的第一个字符开始,依次和模式的每个字符进行比较,如果匹配成功,则继续比较下一个字符,否则从主的下一个字符开始重新匹配BF算法的时间复杂度为O(m*n)。 下面是BF算法的Python代码演示: ```python def BF(main_str, pattern_str): m = len(main_str) n = len(pattern_str) for i in range(m-n+1): j = 0 while j < n and main_str[i+j] == pattern_str[j]: j += 1 if j == n: return i return -1 # 测试 main_str = 'ababcabcacbab' pattern_str = 'abcac' print(BF(main_str, pattern_str)) # 输出:6 ``` 2. KMP算法(Knuth-Morris-Pratt算法) KMP算法是一种改进的模式匹配算法,它的核心思想是利用已经匹配过的信息,尽量减少模式与主匹配次数。具体来说,KMP算法通过预处理模式,得到一个next数组,用于指导匹配过程中的跳转。KMP算法的时间复杂度为O(m+n)。 下面是KMP算法的Python代码演示: ```python def KMP(main_str, pattern_str): m = len(main_str) n = len(pattern_str) next = getNext(pattern_str) i = 0 j = 0 while i < m and j < n: if j == -1 or main_str[i] == pattern_str[j]: i += 1 j += 1 else: j = next[j] if j == n: return i - j else: return -1 def getNext(pattern_str): n = len(pattern_str) next = [-1] * n i = 0 j = -1 while i < n-1: if j == -1 or pattern_str[i] == pattern_str[j]: i += 1 j += 1 next[i] = j else: j = next[j] return next # 测试 main_str = 'ababcabcacbab' pattern_str = 'abcac' print(KMP(main_str, pattern_str)) # 输出:6 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值