验证尼科彻斯定理

题目--尼科彻斯定理可以描述为:任何一个整数的立方都可以表示成一串连续奇数的和

题目分析:看过别人用一个二重循环的方式找结果,感觉算法复杂度高了,自已分析一下看,算法就是找连续奇数的起点和终点,可起点从1开始,从1,3,5...开始向上累加,只要sum小于n立方就一直累加,一旦等于就说明定理成立跳出循环,一旦sum大于n立方,就把起点向上提,并在sum中减去起点前面的去掉的奇数值,如此循环直至sum等于n立方,以下是C语言程序代码:

#include <stdio.h>

void NicoChess(int n)
{
    int i=1,j=1,sum=1;
    while(sum!=n*n*n)
    {
        while(sum<n*n*n)
        {
            j=j+2;
            sum=sum+j;
        }
        while(sum>n*n*n)
        {
            sum=sum-i;
            i=i+2;
        }
    }
    printf("%d=%d+...+%d\n",n*n*n,i,j);
}

int main()
{
    int n;
    printf("请输入一个正整数n\n");
    scanf("%d",&n);
    NicoChess(n);
    return 0;
}


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值