并查集属于不相交的数据结构,可以用一个根节点代表整棵树来进行判断,并查集的核心简化步骤有一个就是在构建树的时候应用了路径压缩
以便之后查找的时候速度更加快捷
以下贴出例题源码,并在源码中讲解并查集的四个模板函数
#include"iostream"
#include"cstdio"
using namespace std;
int fa[100]; //记录编号为i的父亲的编号
int deep[100]; //记录森林中树的深度
int n,m;
int x,y;
void init(int n) //初始化并查集
{
for(int i=1;i<=n;i++) //这里要依题来判断,如果编号是从0,开始,那么初始编号就是0,否则是1
{
fa[i]=i;
deep[i]=0;
}
}
int find(int x) //查找树中的根
{
if(x==fa[x])
{
return x;
}
else
{
return fa[x]=find(fa[x]); //应用了路径压缩,不断将各个节点直接指向根节点,便于下次查找
}
}
void unit(int x,int y) //合并两个树,拥有同一个根节点,并且合并的时候,把小树插到大树上面
{
x=find(x);
y=find(y);
if(x==y);
else
{
if(deep[x]<deep[y])
{
fa[x]=y;
}
else
{
if(deep[x]==deep[y])
{
deep[x]++;
}
fa[y]=x;
}
}
}
bool same(int x,int y) //判断是否是同根节点,即判断祖先是否相同
{
return find(x)==find(y);
}
int main()
{
int sum=0;
cin>>n>>m;
init(n);
for(int i=1;i<=m;i++)
{
cin>>x>>y;
unit(x,y);
}
for(int i=1;i<=n;i++) //遍历一遍,是根节点就就计数
{
if(i==fa[i])
{
sum++;
}
}
cout<<sum<<endl;
return 0;
}