
0帧起手 学ai
文章平均质量分 95
lu rong_qq
不会写 Python 的 SAP 实施顾问不是好占卜师。
B1实施/白菜价占卜,可私信。
展开
-
【LLM】一文了解 NLP 里程碑模型 BERT
BERT(Bidirectional Encoder Representations from Transformers)是一种用于自然语言处理(NLP)的深度学习模型,由谷歌于 2018 年提出,是一个深刻改变 NLP 领域的里程碑模型,通过其双向上下文表示和预训练-微调的策略,在文本理解任务中取得了显著成果。原创 2025-01-02 16:37:18 · 982 阅读 · 0 评论 -
【LLM】概念解析 - Tensorflow/Transformer/PyTorch
本文将从算法原理、适用范围、强项、知名大模型的应用、python 调用几个方面,对深度学习框架 TensorFlow、PyTorch 和基于深度学习的模型 Transformer 进行比较。主要作用是基础概念扫盲。原创 2024-12-31 17:12:04 · 1811 阅读 · 0 评论 -
【机器学习】Lesson 6 - 决策树(分类)
决策树 (decision tree) 是机器学习中一类常见的监督学习算法,可用于分类和回归任务。决策树通过递归地对数据集进行分裂,最终形成一系列规则。这些规则根据输入数据的特征,将其分类到特定类别或预测值。原创 2024-12-09 16:31:10 · 1864 阅读 · 0 评论 -
【机器学习】Lesson 5 - K近邻(KNN)分类/回归
K近邻(KNN)是一种常见的监督学习算法,主要用于分类和回归问题。在前文《L4 垃圾邮件数据集分类延申 - NB/KNN/SVC/随机森林》中,已经有涉及到适用 KNN 进行自然语言的分类处理。在本文中,将详细介绍 KNN 的模型原理、使用方法等,并且分为分类与回归分别选取数据集进行模型训练。原创 2024-11-18 16:55:25 · 2181 阅读 · 0 评论 -
L4 垃圾邮件数据集分类延申 - NB/KNN/SVC/随机森林
基于前文(《【机器学习】Lesson 4 - 朴素贝叶斯(NB)文本分类》)对于垃圾邮件数据集的分类处理,增加 K邻居分类器(KNN)/支持向量机(SVC)/随机森林 算法模型,并通过生成准确性报告和绘制混淆矩阵,对不同模型的性能进行比较。同时丰富数据预处理部分,增加词云展现等,完整代码及跑通效果见文档绑定资源。原创 2024-11-11 16:15:34 · 2007 阅读 · 0 评论 -
【机器学习】Lesson 4 - 朴素贝叶斯(NB)文本分类
朴素贝叶斯(Naive Bayes)是一种基于贝叶斯定理(即条件概率)的简单高效的分类算法,广泛应用于文本分类和其他监督学习任务。朴素贝叶斯算法假设特征之间相互独立,这一假设使得算法运算简洁,适合处理高维度数据。原创 2024-11-06 16:13:48 · 1888 阅读 · 0 评论 -
【机器学习】Lesson3 - 逻辑回归(LR)二分类
逻辑回归(Logistic Regression)是一种用于分类问题的统计模型,尽管名字里有“回归”,但它主要用于解决二元分类(binary classification)或多类分类问题。与线性回归不同,逻辑回归输出的是一个概率,通过设置阈值将概率转换为类别。原创 2024-10-24 18:05:27 · 2182 阅读 · 0 评论 -
【机器学习】Lesson2 - 回归(Regression)
回归(Regression)是一种用于 预测连续目标变量 的统计技术。其核心思想是根据已知的输入特征,构建一个模型来预测一个数值输出。回归既是一类算法,也可以视为一种模型,它通过学习数据中自变量(特征)和因变量(目标)之间的关系,来实现预测或推断。在机器学习中,回归模型不仅用于简单的预测任务,还广泛应用于优化、控制和金融等领域。本文中将使用 加州房价数据集作为例子进行分析处理。原创 2024-10-18 17:49:46 · 1465 阅读 · 0 评论 -
L1练习-鸢尾花数据集处理(分类/聚类)
本文将完善前文代码,在使用 sklearn 的部分工具包基础上,增加部分数据预处理、数据分析和数据可视化。由于鸢尾花数据集适用于进行分类和聚类的练习,这里使用多种分类和聚类方式,并验证其准确性。同时在概念部分对分类和聚类的种类、库、用法等进行补充介绍。并在文首附上跑通资源,便于直接查看处理结果。原创 2024-10-15 10:37:36 · 2353 阅读 · 0 评论 -
L1 Sklearn 衍生概念辨析 - 回归/分类/聚类/降维
本文将展开解释回归、分类、聚类和降维的区别,并使用 Scikit-learn 中的自带数据集来说明各自的用途以及它们所达到的效果,可以帮助我们更直观地理解这几类机器学习任务。原创 2024-10-12 15:21:11 · 1428 阅读 · 0 评论 -
【机器学习】Lesson1 - Sklearn(开源Python机器学习包)
Scikit-learn(简称sklearn)是Python中一个强大且广泛使用的机器学习库,基于其他常用的科学计算库,如NumPy、SciPy和matplotlib。它封装了一系列数据预处理、机器学习算法、模型选择等工具,提供了简单易用的接口,支持包括分类、回归、降维和聚类四大机器学习算法,还包括了特征提取、数据处理和模型评估三大模块。原创 2024-10-10 15:37:37 · 1779 阅读 · 0 评论 -
AI 概念大杂烩
ai 小白自学过程中碰到的概念问题,包括(但不限于,碰到新的会回来更新):数据挖掘/机器学习/深度学习;AI/AIGC;各种神经网络原创 2024-10-09 17:45:21 · 1103 阅读 · 0 评论