我的程序人生

Software Engineer, The Artist of Simulating the World.

如何细粒度地控制你的MyBatis二级缓存(mybatis-enhanced-cache插件实现)

      前几天网友chanfish 给我抛出了一个问题,笼统地讲就是如何能细粒度地控制MyBatis的二级缓存问题,酝酿了几天,觉得可以写个插件来实现这个这一功能。本文就是从问题入手,一步步分析现存的MyBatis的二级缓存的不足之处,探讨一点可以改进的地方,并且对不足之处开发一个插件进行弥补。

本文如下组织结构:

  1. 一个关于MyBatis的二级缓存的实际问题
  2. 当前MyBatis二级缓存的工作机制
  3. mybatis-enhanced-cache插件的设计和工作原理
  4. mybatis-enhanced-cache 插件的使用实例

1.一个关于MyBatis的二级缓存的实际问题

网友chanfish 给我抛出的问题

现有AMapper.xml中定义了对数据库表 ATable 的CRUD操作,BMapper定义了对数据库表BTable的CRUD操作;
假设 MyBatis 的二级缓存开启,并且 AMapper 中使用了二级缓存,AMapper对应的二级缓存为ACache
除此之外,AMapper 中还定义了一个跟BTable有关的查询语句,类似如下所述:

<select id="selectATableWithJoin" resultMap="BaseResultMap" useCache="true">
      select * from ATable left join BTable on ....
</select>

执行以下操作:

1. 执行AMapper中的"selectATableWithJoin" 操作,此时会将查询到的结果放置到AMapper对应的二级缓存ACache中;

2. 执行BMapper中对BTable的更新操作(update、delete、insert)后,BTable的数据更新;

3. 再执行1完全相同的查询,这时候会直接从AMapper二级缓存ACache中取值,将ACache中的值直接返回;


好,问题就出现在第3步上:

     由于AMapper的“selectATableWithJoin” 对应的SQL语句需要和BTable进行join查找,而在第 2 步BTable的数据已经更新了,但是第 3 步查询的值是第 1 步的缓存值,已经极有可能跟真实数据库结果不一样,即ACache中缓存数据过期了!


总结来看,就是:

         对于某些使用了 join连接的查询,如果其关联的表数据发生了更新,join连接的查询由于先前缓存的原因,导致查询结果和真实数据不同步;

从MyBatis的角度来看,这个问题可以这样表述:

        对于某些表执行了更新(update、delete、insert)操作后,如何去清空跟这些表有关联的查询语句所造成的缓存;


当前的MyBatis的缓存机制不能很好地处理这一问题,下面我们将从当前的MyBatis的缓存机制入手,分析这一问题:


2. 当前MyBatis二级缓存的工作机制:

当前MyBatis二级缓存的工作机制:

MyBatis二级缓存的一个重要特点:即松散的Cache缓存管理和维护。

     一个Mapper中定义的增删改查操作只能影响到自己关联的Cache对象。如上图所示的Mapper namespace1中定义的若干CRUD语句,产生的缓存只会被放置到相应关联的Cache1中,即Mapper namespace2,namespace3,namespace4 中的CRUD的语句不会影响到Cache1。

     可以看出,Mapper之间的缓存关系比较松散,相互关联的程度比较弱。

    

     现在再回到上面描述的问题,如果我们将AMapper和BMapper共用一个Cache对象,那么,当BMapper执行更新操作时,可以清空对应Cache中的所有的缓存数据,这样的话,数据不是也可以保持最新吗?

    确实这个也是一种解决方案,不过,它会使缓存的使用效率变的很低!AMapper和BMapper的任意的更新操作都会将共用的Cache清空,会频繁地清空Cache,导致Cache实际的命中率和使用率就变得很低了,所以这种策略实际情况下是不可取的。


     最理想的解决方案就是:

          对于某些表执行了更新(update、delete、insert)操作后,如何去清空跟这些表有关联的查询语句所造成的缓存;

     这样,就是以很细的粒度管理MyBatis内部的缓存,使得缓存的使用率和准确率都能大大地提升。   

    基于这个思路,我写了一个对应的mybatis-enhanced-cache 缓存插件,可以很好地支持上述的功能。  

    对于上述的例子中,该插件可以实现:当BMapper对BTable执行了更新操作时,指定清除与BTable相关联的selectATableWithJoin查询语句在ACache中产生的缓存。

    

     接下来就来看看这个mybatis-enhanced-cache插件的设计原理吧:



3.mybatis-enhanced-cache插件的设计和工作原理


mybatis-enhanced-cache插件的设计和工作原理

该插件主要由两个构件组成:EnhancedCachingExecutorEnhancedCachingManager

EnhancedCachingExecutor是针对于Executor的拦截器,拦截Executor的几个关键的方法;

EnhancedCachingExecutor主要做以下几件事:

1. 每当有Executor执行query操作时,

       1.1  记录下该查询StatementId和CacheKey,然后将其添加到EnhancedCachingManager中;

       1.2  记录下该查询StatementId 和此StatementId所属Mapper内的Cache缓存对象引用,添加到EnhancedCachingManager中;

2. 每当Executor执行了update操作时,将此 update操作的StatementId传递给EnhancedCachingManager,让EnhancedCachingManager根据此update的StatementId的配置,去清空指定的查询语句所产生的缓存;


另一个构件:EnhancedCachingManager,它也是本插件的核心,它维护着以下几样东西:

1. 整个MyBatis的所有查询所产生的CacheKey集合(以statementId分类);

2. 所有的使用过了的查询的statementId 及其对应的Cache缓存对象的引用;

3. update类型的StatementId和查询StatementId集合的映射,用于当Update类型的语句执行时,根据此映射决定应该清空哪些查询语句产生的缓存;

如下图所示:


工作原理:

           原理很简单,就是 当执行了某个update操作时,根据配置信息去清空指定的查询语句在Cache中所产生的缓存数据。



如何获取mybatis-enhanced-cache插件源码

1. 源码和jar包2合一压缩包

2. github 地址,直接fork即可:

         https://github.com/LuanLouis/mybatis-enhanced-cache



4. mybatis-enhanced-cache 插件的使用实例:

1. 下载 mybatis-enhanced-cache.rar压缩包,解压,将其内的mybatis-enhanced-cache-0.0.1-SNAPSHOT.jar添加到项目的classpath下;


2. 配置MyBatis配置文件如下:

  <plugins>
       <plugin interceptor="org.luanlouis.mybatis.plugin.cache.EnhancedCachingExecutor">
          <property name="dependency" value="dependencys.xml"/>
          <property name="cacheEnabled" value="true"/>
       </plugin>
  </plugins>

    其中,<property name="dependency"> 中的value属性是 StatementId之间的依赖关系的配置文件路径。


3. 配置StatementId之间的依赖关系

<?xml version="1.0" encoding="UTF-8"?>
<dependencies>
   <statements>
       <statement id="com.louis.mybatis.dao.DepartmentsMapper.updateByPrimaryKey">
          <observer id="com.louis.mybatis.dao.EmployeesMapper.selectWithDepartments" />
       </statement>
   </statements>
</dependencies>

 <statement>节点配置的是更新语句的statementId,其内的子节点<observer> 配置的是当更新语句执行后,应当清空缓存的查询语句的StatementId。子节点<observer>可以有多个。

 如上的配置,则说明,如果"com.louis.mybatis.dao.DepartmentsMapper.updateByPrimaryKey" 更新语句执行后,由 “com.louis.mybatis.dao.EmployeesMapper.selectWithDepartments” 语句所产生的放置在Cache缓存中的数据都都会被清空。


4. 配置DepartmentsMapper.xml 和EmployeesMapper.xml

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN" "http://mybatis.org/dtd/mybatis-3-mapper.dtd" >
<mapper namespace="com.louis.mybatis.dao.DepartmentsMapper" >
   
   <cache></cache>

  <resultMap id="BaseResultMap" type="com.louis.mybatis.model.Department" >
    <id column="DEPARTMENT_ID" property="departmentId" jdbcType="DECIMAL" />
    <result column="DEPARTMENT_NAME" property="departmentName" jdbcType="VARCHAR" />
    <result column="MANAGER_ID" property="managerId" jdbcType="DECIMAL" />
    <result column="LOCATION_ID" property="locationId" jdbcType="DECIMAL" />
  </resultMap>
  
  
  <sql id="Base_Column_List" >
    DEPARTMENT_ID, DEPARTMENT_NAME, MANAGER_ID, LOCATION_ID
  </sql>
  
  <update id="updateByPrimaryKey" parameterType="com.louis.mybatis.model.Department" >
    update HR.DEPARTMENTS
    set DEPARTMENT_NAME = #{departmentName,jdbcType=VARCHAR},
      MANAGER_ID = #{managerId,jdbcType=DECIMAL},
      LOCATION_ID = #{locationId,jdbcType=DECIMAL}
    where DEPARTMENT_ID = #{departmentId,jdbcType=DECIMAL}
  </update>
    <select id="selectByPrimaryKey" resultMap="BaseResultMap" parameterType="java.lang.Integer" >
    select 
    <include refid="Base_Column_List" />
    from HR.DEPARTMENTS
    where DEPARTMENT_ID = #{departmentId,jdbcType=DECIMAL}
  </select>
</mapper>
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN" "http://mybatis.org/dtd/mybatis-3-mapper.dtd">
<mapper namespace="com.louis.mybatis.dao.EmployeesMapper">

  <cache eviction="LRU" flushInterval="100000" size="10000"/>

  <resultMap id="BaseResultMap" type="com.louis.mybatis.model.Employee">
    <id column="EMPLOYEE_ID" jdbcType="DECIMAL" property="employeeId" />
    <result column="FIRST_NAME" jdbcType="VARCHAR" property="firstName" />
    <result column="LAST_NAME" jdbcType="VARCHAR" property="lastName" />
    <result column="EMAIL" jdbcType="VARCHAR" property="email" />
    <result column="PHONE_NUMBER" jdbcType="VARCHAR" property="phoneNumber" />
    <result column="HIRE_DATE" jdbcType="DATE" property="hireDate" />
    <result column="JOB_ID" jdbcType="VARCHAR" property="jobId" />
    <result column="SALARY" jdbcType="DECIMAL" property="salary" />
    <result column="COMMISSION_PCT" jdbcType="DECIMAL" property="commissionPct" />
    <result column="MANAGER_ID" jdbcType="DECIMAL" property="managerId" />
    <result column="DEPARTMENT_ID" jdbcType="DECIMAL" property="departmentId" />
  </resultMap>

  <sql id="Base_Column_List">
    EMPLOYEE_ID, FIRST_NAME, LAST_NAME, EMAIL, PHONE_NUMBER, HIRE_DATE, JOB_ID, SALARY, 
    COMMISSION_PCT, MANAGER_ID, DEPARTMENT_ID
  </sql>
  
  <select id="selectWithDepartments" parameterType="java.lang.Integer" resultMap="BaseResultMap" useCache="true" >
    select 
    *
    from HR.EMPLOYEES t left join HR.DEPARTMENTS S ON T.DEPARTMENT_ID = S.DEPARTMENT_ID
    where EMPLOYEE_ID = #{employeeId,jdbcType=DECIMAL}
  </select>
  
</mapper>


5. 测试代码:

package com.louis.mybatis.test;

import java.io.InputStream;
import java.util.Date;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;

import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibatis.session.SqlSessionFactory;
import org.apache.ibatis.session.SqlSessionFactoryBuilder;
import org.apache.log4j.Logger;

import com.louis.mybatis.model.Department;
import com.louis.mybatis.model.Employee;

/**
 * SqlSession 简单查询演示类
 * @author louluan
 */
public class SelectDemo3 {

	private static final Logger loger = Logger.getLogger(SelectDemo3.class);
	
	public static void main(String[] args) throws Exception {
		InputStream inputStream = Resources.getResourceAsStream("mybatisConfig.xml");
		SqlSessionFactoryBuilder builder = new SqlSessionFactoryBuilder();
		SqlSessionFactory factory = builder.build(inputStream);
		
		SqlSession sqlSession = factory.openSession(true);
		SqlSession sqlSession2 = factory.openSession(true);
		//3.使用SqlSession查询
		Map<String,Object> params = new HashMap<String,Object>();
		params.put("employeeId",10);
		//a.查询工资低于10000的员工
		Date first = new Date();
		//第一次查询
		List<Employee> result = sqlSession.selectList("com.louis.mybatis.dao.EmployeesMapper.selectWithDepartments",params);
        sqlSession.commit();
        checkCacheStatus(sqlSession);
        params.put("employeeId", 11);
        result = sqlSession.selectList("com.louis.mybatis.dao.EmployeesMapper.selectWithDepartments",params);
        sqlSession.commit();
        checkCacheStatus(sqlSession);
        params.put("employeeId", 12);
        result = sqlSession.selectList("com.louis.mybatis.dao.EmployeesMapper.selectWithDepartments",params);
        sqlSession.commit();
        checkCacheStatus(sqlSession);
        params.put("employeeId", 13);
        result = sqlSession.selectList("com.louis.mybatis.dao.EmployeesMapper.selectWithDepartments",params);
        sqlSession.commit();
        checkCacheStatus(sqlSession);
		Department department = sqlSession.selectOne("com.louis.mybatis.dao.DepartmentsMapper.selectByPrimaryKey",10);
		department.setDepartmentName("updated");
		sqlSession2.update("com.louis.mybatis.dao.DepartmentsMapper.updateByPrimaryKey", department);
		sqlSession.commit();
		checkCacheStatus(sqlSession);
	}
	
	
	public static void checkCacheStatus(SqlSession sqlSession)
	{
		loger.info("------------Cache Status------------");
		Iterator<String> iter = sqlSession.getConfiguration().getCacheNames().iterator();
		while(iter.hasNext())
		{
			String it = iter.next();
			loger.info(it+":"+sqlSession.getConfiguration().getCache(it).getSize());
		}
		loger.info("------------------------------------");
		
	}

}

结果输出:

结果分析:

从上述的结果可以看出,前四次执行了“com.louis.mybatis.dao.EmployeesMapper.selectWithDepartments”语句,EmployeesMapper对应的Cache缓存中存储的结果缓存有1个增加到4个。

当执行了"com.louis.mybatis.dao.DepartmentsMapper.updateByPrimaryKey"后,EmployeeMapper对应的缓存Cache结果被清空了,即"com.louis.mybatis.dao.DepartmentsMapper.updateByPrimaryKey"更新语句引起了EmployeeMapper中的"com.louis.mybatis.dao.EmployeesMapper.selectWithDepartments"缓存的清空。





          


作者的话

该插件的实现周期比较短,尚未经过性能方面的测试,如果果您对此插件有任何意见或者看法,可以留言一起交流和探讨。

该插件源码已经放到了Github上,可供大家自由修改,github地址:

                     https://github.com/LuanLouis/mybatis-enhanced-cache




阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u010349169/article/details/41800511
个人分类: MyBatis
所属专栏: 深入理解MyBatis原理
想对作者说点什么? 我来说一句

glm enhance版

2017年12月01日 126KB 下载

没有更多推荐了,返回首页

不良信息举报

如何细粒度地控制你的MyBatis二级缓存(mybatis-enhanced-cache插件实现)

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭